

COV877 Special Module on Visual Computing

Generative AI for Visual Content Creation: Image, Video, and 3D

3D Generation

Instructor:

Dr. Lokender Tiwari

Research Scientist

Text to 2D Generation

... many more

- [1] Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." CVPR 2022.
- [2] Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." NeurIPS (2022)
- [3] https://www.midjourney.com/

Some existing methods ...

Magic3D / ProlificDreamer / DreamFusion

Input: Text / Image prompt
Output: Mesh with texture

- Time consuming (2-3 hours for 1 object)
- Poor quality mesh
- · No editing, articulation
- Janus problem

Neural Articulation Prior

Input: Object part latents
Output: Articulation between
object latents

- Dataset specific
- Non-intuitive, every object needs to be converted to its part latents
- Poor quality missing parts

SHAP-E

Input: Text / Image prompt
Output: Mesh with texture

- Very poor quality mesh
- No editing, articulation

Set the Scene

Input: Text prompt and object meshes
Output: textured mesh of the room
resembling the text prompt and given
mesh

- Poor quality mesh
- Time consuming (3-4 hours for 1 object)
- No editing, articulation

GENIE by LUMA AI

Input: Text prompt
Output: textured mesh of scene
/object

- Poor quality mesh
- No editing, articulation

Scene Scape

Input : Text promptOutput: textured mesh of scene

- Poor quality mesh
- No consistency
- Time consuming and computationally expensive
- No editing, articulation

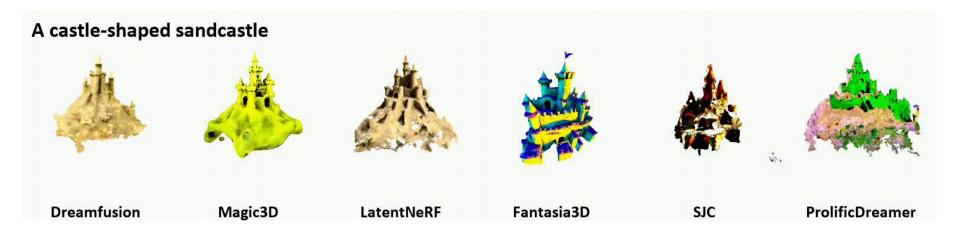
Text2Room

Input: Text prompt and initial camera coordinates

Output: mesh of a room

- Non intuitive, require multiple negative prompts
- Poor quality mesh
- No editing, articulation

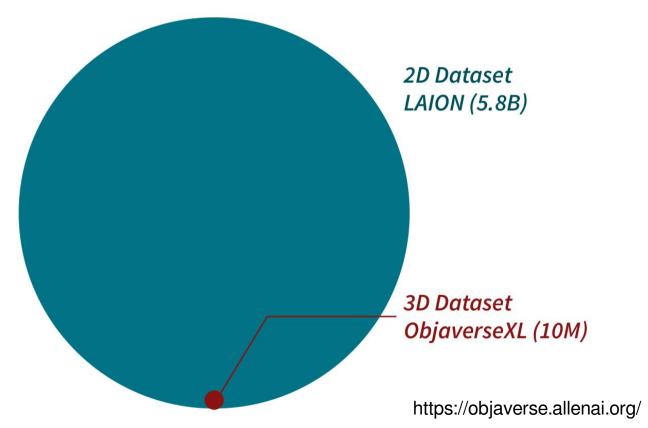
Some existing methods ...



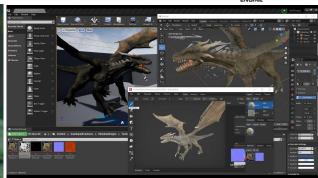
- [1] Poole, Ben, et al. "Dreamfusion: Text-to-3d using 2d diffusion." arXiv preprint arXiv:2209.14988 (2022).
- [2] Lin, Chen-Hsuan, et al. "Magic3d: High-resolution text-to-3d content creation." CVPR 2023.
- [3] Metzer, Gal, et al. "Latent-nerf for shape-guided generation of 3d shapes and textures." CVPR, 2023.
- [4] Chen, Rui, et al. "Fantasia3d: Disentangling geometry and appearance for high-quality text-to-3d content creation." ICCV, 2023.
- [5] Wang, Haochen, et al. "Score jacobian chaining: Lifting pretrained 2d diffusion models for 3d generation." CVPR 2023.
- [6] Wang, Zhengyi, et al. "Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation." NeurIPS (2023).

Why Text to 3D not progressed

Data scarcity



Existing tools for 3D creation



- High quality 3D assets
- Expert 3D artist required
- Time consuming and expensive

Assistive tools are coming up

Different Categories

Hybrid3D

No 3D Data

Large Large vision-language model

Pepper the aussie pup

CLIP

DALLE-2

ALIGN

IMAGEN

Prompt-based optimization of **differentiable** 3D representation

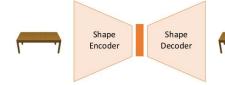
NeRF

DMTet

Unpaired Text-3D Data

3D shape corpus

Learned 3D shape priors



Paired Text-3D Data

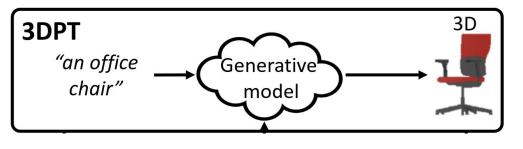
"a tall brown table"

"a brown table with four legs"

"a gray, cushioned chair"

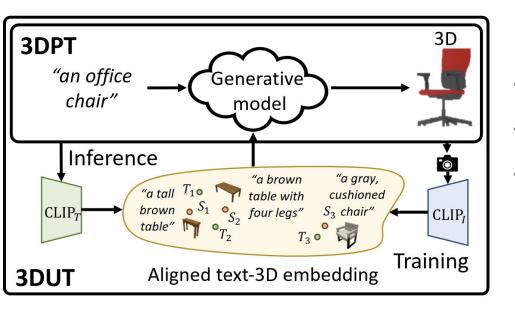
Aligned text-3D embedding

"a tall T_1 " "a brown "a gray, table with cushioned brown S_1 S_2 four legs" S_3 chair" table" T_2 T_3



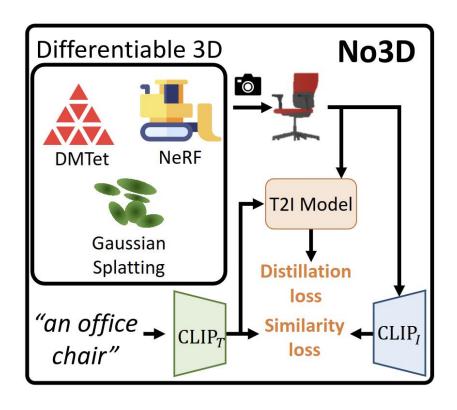
3D Paired Text (3DPT)

- Requires paired text-3D data which is limited.
- Generation limited to observed data.



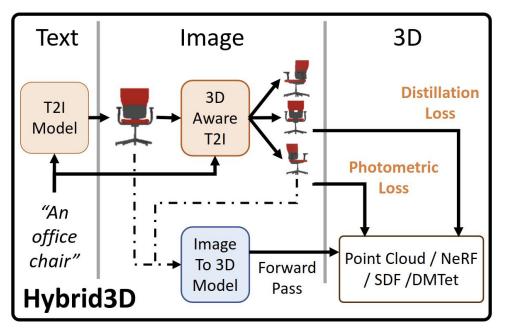
3D Unpaired Text (3DUT)

- Leverages 3D data to train 3D generative model.
- Bridges text and 3D using images.
- Can use vision-language models to generate captions for 3D data, reducing to "Paired" scenario.



No 3D Data (NO3D)

- No 3D data for training.
- Multi-view and structure consistency is an issue.
- Uses images as bridge, typically with differentiable rendering.
- Conceptually can generate arbitrary 3D content.
- Per-prompt optimization, slow.



Hybrid3D

- Combine text-to-image and image-to-3D methods.
- Enforce 3D consistency using 3D-aware text-toimage models or multi-view images.

Can we generate a 3D object from its 2D images?

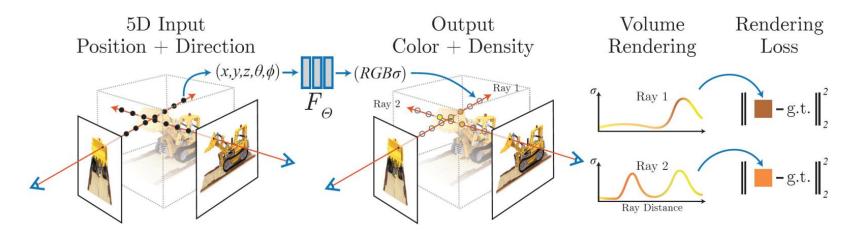
NeRF

Input: Set of images with camera poses

Output: An implicit representation of 3D object

The optimization loop

- 1. Render an image from a specific view using NeRF
- 2. Compute the loss between rendered and ground truth image
- 3. Compute the gradient and update the NeRF using gradient descent



Do we need many images? No, but... additional information would be required

 $\mathcal{L}_{\text{SC}}(I, \hat{I}) = \lambda \phi(I)^T \phi(\hat{I})$

Leverage CLIP's prior knowledge.
CLIP (ICML 2021): A text-to-image model

It takes a text-image pair as input and compute the alignment between them.

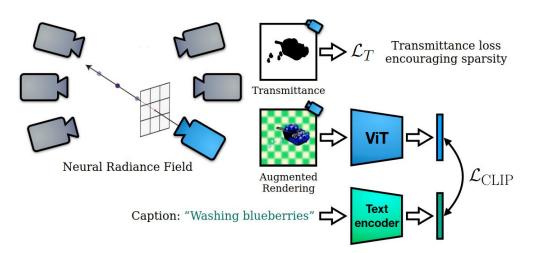
"a bulldozer is a bulldozer from any perspective"

Dream Fields (CVPR 2022)

Input: A text prompt but no images,

Output: A 3D shape

How ?: Maximize the **similarity** between a **rendered image** and the input prompt in the **CLIP** embedding space.



sample outputs

a robotic dog. a robot in the shape of a dog.

matte painting of a castle made of cheesecake surrounded by a moat made of ice cream

A boat on the water tied down to a stake.

Zero-shot view synthesis

matte painting of a bonsai tree

Can we do better than CLIP, in terms of evaluating the similarity/plausibility of the rendered image?

Image Diffusion Models?

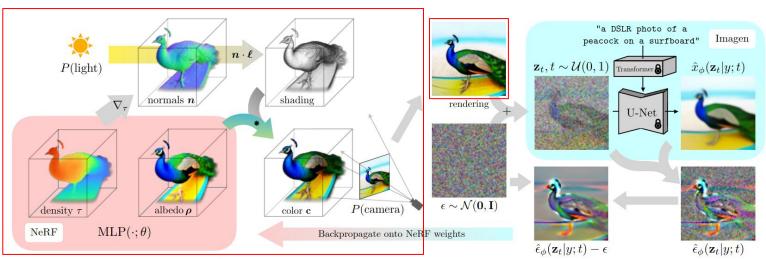
DreamFusion (ICLR 2023): Text-to-3D using 2D Diffusion

Score Distillation Sampling (SDS): A concept proposed to measure the plausibility of the rendered image, leveraging the 2D diffusion.

How?

...want to create 3D models that look like good images when rendered from random angles...

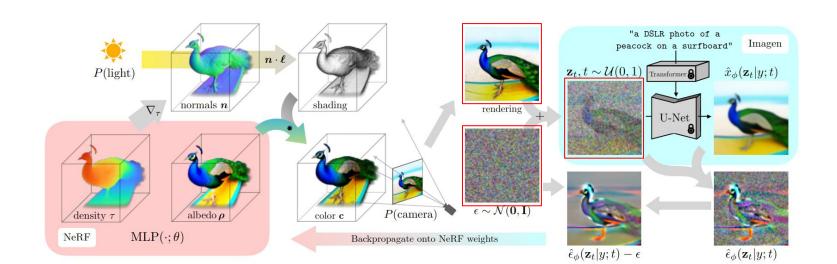
1. Render an image from a specific view using NeRF



How?

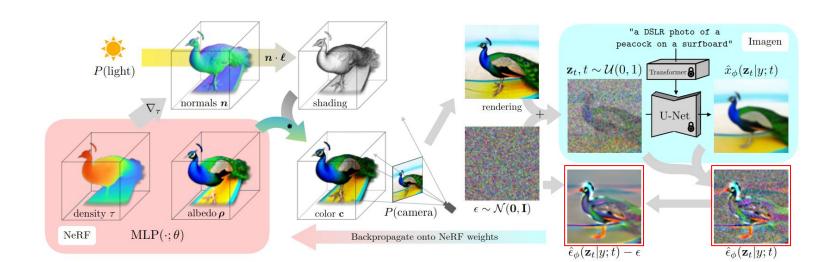
2. Add noise to the rendered image

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \mathbf{\varepsilon}_t$$



How?

3. Perform gradient descent on loss L with respect to the NeRF parameters



How? - The maths

loss perturbs x with a random amount of noise, and estimates an update direction that follows the score function of the diffusion model to move to a higher density region

$$\mathcal{L}_{\mathrm{Diff}}(\phi,\mathbf{x}) = \mathbb{E}_{t \sim \mathcal{U}(0,1),\epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{I})} \left[w(t) \| \quad \epsilon_{\phi}(\mathbf{z}_t;t,y) \right. \\ \left. \begin{array}{c} \epsilon_{\phi}(\mathbf{z}_t;y,t) = (1+\omega)\epsilon_{\phi}(\mathbf{z}_t;y,t) - \omega\epsilon_{\phi}(\mathbf{z}_t;t) \\ \theta^* = \arg\min_{\theta} \mathcal{L}_{\mathrm{Diff}}(\phi,\mathbf{x} = g(\theta)) \quad \text{g differentiable generator} \end{array} \right] \\ \nabla_{\theta}\mathcal{L}_{\mathrm{Diff}}(\phi,\mathbf{x} = g(\theta)) = \mathbb{E}_{t,\epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_t;y,t) - \epsilon \right) \quad \frac{\partial \epsilon_{\phi}(\mathbf{z}_t;y,t)}{\partial t} \quad \frac{\partial \mathbf{x}}{\partial \theta} \right]$$

U-Net Jacobian Generator Jacobian

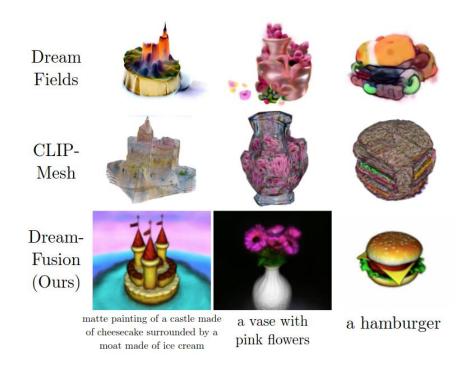
$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, \mathbf{x} = g(\theta)) \triangleq \mathbb{E}_{t, \epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_t; y, t) - \epsilon \right) \frac{\partial \mathbf{x}}{\partial \theta} \right] \qquad \text{gradient of a weighted probability density distillation}$$

Noise Residual

expensive to compute (requires backpropagating through the diffusion model U-Net), and poorly conditioned for small noise levels as it is trained to approximate the scaled Hessian of the marginal density. We found that omitting the U-Net Jacobian term leads to an effective gradient for optimizing

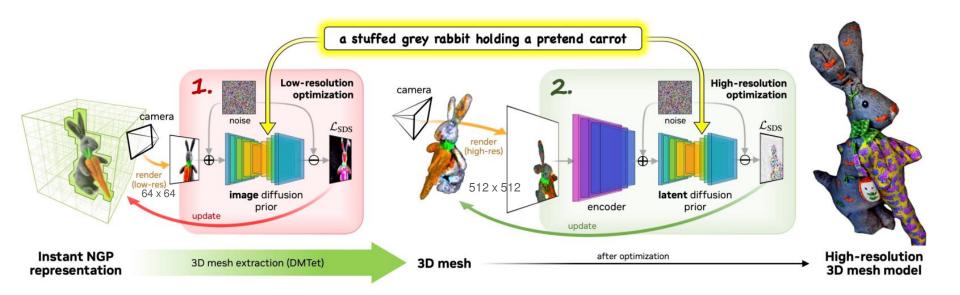
DreamFusion: Sample Results

More results https://dreamfusion3d.github.io/



Magic3D (CVPR 2023)

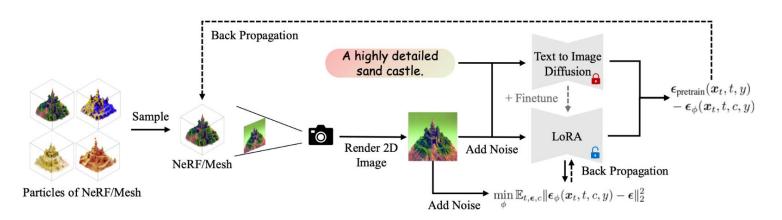
- Two stage approach
- Stage 1: Coarse level
- Stage 2: Fine level textured mesh



(ProlificDreamer NeurIPS 2023)

- SDS suffers from over-saturation, over-smoothing, and low-diversity problems
- Minimize the SDS loss for multiple sample of NeRF 3D scene given a textual prompt as a random variable instead of a single point as in SDS
- VSD optimizes a distribution of 3D scenes such that the distribution induced on images rendered from all views aligns as closely as possible
- Finetune the diffusion model using low rank adaptation

$$\nabla_{\theta} \mathcal{L}_{\text{VSD}}(\theta) \triangleq \mathbb{E}_{t, \boldsymbol{\epsilon}, c} \left[\omega(t) \left(\boldsymbol{\epsilon}_{\text{pretrain}}(\boldsymbol{x}_t, t, y^c) - \boldsymbol{\epsilon}_{\phi}(\boldsymbol{x}_t, t, c, y) \right) \frac{\partial \boldsymbol{g}(\theta, c)}{\partial \theta} \right] \quad \text{SDS is a special case of VSD}$$



Algorithm 1 Variational Score Distillation

Input: Number of particles $n \geq 1$. Large text-to-image diffusion model $\epsilon_{\text{pretrain}}$. Learning rate η_1 and η_2 for 3D structures and diffusion model parameters, respectively. A prompt y.

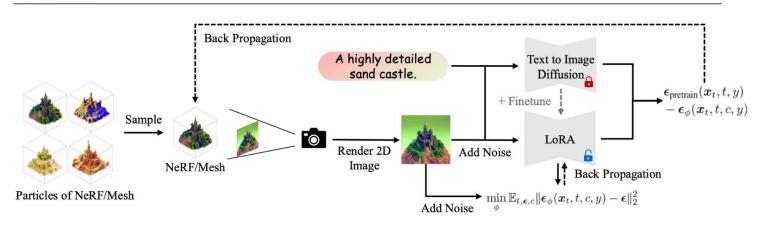
- 1: **initialize** n 3D structures $\{\theta^{(i)}\}_{i=1}^n$, a noise prediction model ϵ_{ϕ} parameterized by ϕ .
- 2: while not converged do
- 3: Randomly sample $\theta \sim \{\theta^{(i)}\}_{i=1}^n$ and a camera pose c.
- 4: Render the 3D structure θ at pose c to get a 2D image $x_0 = g(\theta, c)$.

5:
$$\theta \leftarrow \theta - \eta_1 \mathbb{E}_{t, \epsilon, c} \left[\omega(t) \left(\epsilon_{\text{pretrain}}(\boldsymbol{x}_t, t, y^c) - \epsilon_{\phi}(\boldsymbol{x}_t, t, c, y) \right) \frac{\partial \boldsymbol{g}(\theta, c)}{\partial \theta} \right]$$

- 6: $\phi \leftarrow \phi \eta_2 \nabla_{\phi} \mathbb{E}_{t,\epsilon} || \epsilon_{\phi}(\boldsymbol{x}_t, t, c, y) \epsilon ||_2^2$.
- 7: **end while**

8: return

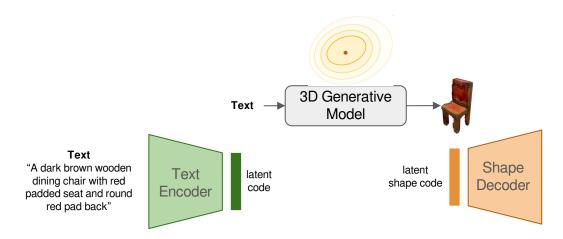
To model the score of the variational distribution, we train an additional diffusion model parameterized by LoRA



Problem with SDS: It does not converge well without a high CFG weight (e.g., w = 400) and thus suffers from model collapse

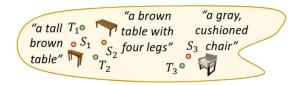
Other issues: "Janus problem"

Mitigation ? : Add 3D consistency e.g. MVDream, SweetDreamer



When paired text-3D data is available?

 Train a joint text-shape embedding by specifying the alignment



When paired text-3D data is not available?

- Use **image** as a bridge between text and shape
- Pre-trained vision-language models: aligned text-image embedding space.
- Train shape encoder to align embedding into the same space, and use them to train shape decoder

Input

Encoder

Condition

Diffusion

process

SDFusion (CVPR 2023)

inference time, we can control the importance of each conditioning modality.

Multi-modality Conditioning

 $(s_1, s_2) = (0,0)$

 $(s_1, s_2) = (1,0)$

 $(s_1, s_2) = (0,1)$

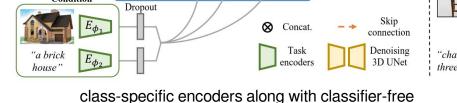
Three steps

- compress the 3D shape into a discretized and compact latent space
- Latent diffusion model
- Include user conditions

$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{\mathbf{z}, \epsilon \sim N(0, 1), t} \left[\|\epsilon - \epsilon_{\theta}(\mathbf{z}_{t}, t)\|^{2} \right]$$

$$L(\theta, \{\phi_i\}) := \underset{\mathbf{z}, \mathbf{c}, \epsilon, t}{\mathbb{E}} \left[\left\| \epsilon - \epsilon_{\theta}(\mathbf{z}_t, t, F\{D \circ E_{\phi_i}(\mathbf{c}_i)\}) \right\|^2 \right]$$

$$\epsilon_{\theta}(\mathbf{z}_{t}, t, F\{E_{\phi_{i}} \, \forall i\}) = \epsilon_{\theta}(\mathbf{z}_{t}, t, \emptyset) + \sum_{i} s_{i} \left(\epsilon_{\theta}(\mathbf{z}_{t}, t, F\{E_{\phi_{i}}(\mathbf{c}_{i}), E_{\phi_{j}}(\mathbf{c}_{j}) : \mathbf{c}_{j} = \emptyset \, \forall j \neq i \} \right) - \epsilon_{\theta}(\mathbf{z}_{t}, t, \emptyset),$$



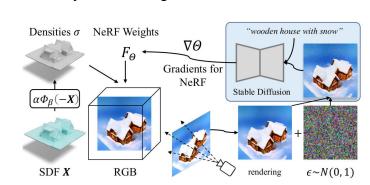
 $(T-1)\times$

class-specific encoders along with classifier-free guidance to enable multi-modality conditioning

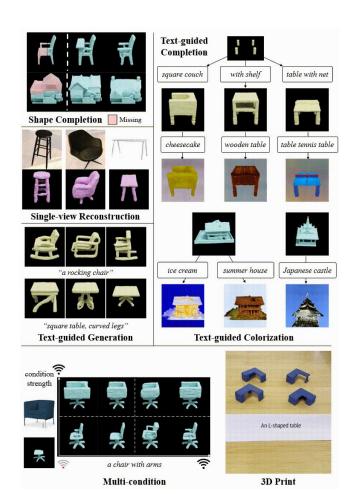
Decoder

Denoise

Output

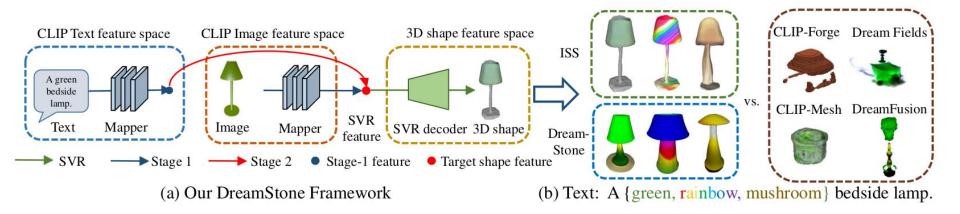


SDFusion - Sample outputs



DreamStone (TPAMI 2023)

- Two stage feature space alignment approach
- leverages a pre-trained single-view reconstruction (SVR) model to map CLIP features to shapes
- A text-guided shape stylization module that can enhance the output shapes with novel structures and textures



Map the CLIP image feature to the detail-rich shape space in the SVR model

map the CLIP text feature to the shape space by encouraging consistency between the input text and rendered images of the generated shape

$$\mathcal{L}_{M} = \sum_{i=1}^{N} ||E_{S}(I_{i}) - M(f_{1,i})||_{2}^{2} \qquad \mathcal{L}_{bg} = \sum_{p} ||D_{c}(p) - 1||_{2}^{2} \mathbb{1}(F \cap \text{ray}(o, p) = \emptyset)$$
Reduce the semantic gap

(b) Stage 2

A wooden table.

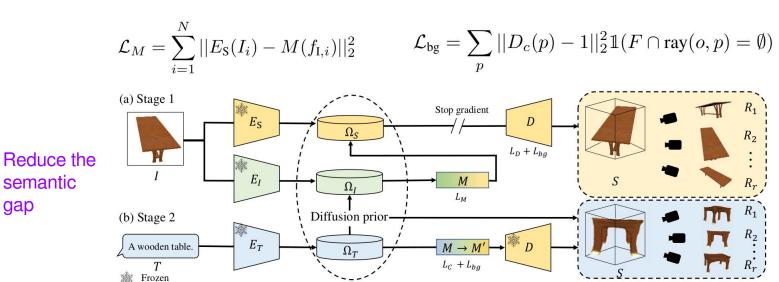
T

A wooden table.

Frozen

Stage -1

- Leverage a pre-trained single-view reconstruction (SVR) model to align the feature spaces of the CLIP image feature space and the shape space of the SVR model.
- Train CLIP2Shape mapper to map images to shapes while keeping encoder frozen, and
- Fine-tune the decoder using an additional background loss
- During training, we stop the gradients from the SVR loss and the background loss propagating to mapper



Stage -2

gap

- Fix the decoder D and fine-tuning the mapper M to M',
- Encourage the CLIP consistency between the rendered images of the generated shape and the input text T.

$$\mathcal{L}_{M} = \sum_{i=1}^{N} ||E_{S}(I_{i}) - M(f_{I,i})||_{2}^{2} \qquad \mathcal{L}_{bg} = \sum_{p} ||D_{c}(p) - 1||_{2}^{2} \mathbb{1}(F \cap \text{ray}(o, p) = \emptyset)$$

$$\text{Reduce the semantic}$$

$$\text{gap}$$

$$\text{(a) Stage 1}$$

$$\text{Stop gradient}$$

$$\text{Stop gradient$$

fine-tune the mapper M using a CLIP consistency loss to reduce the gap between the input text T and m rendered images captured from random camera viewpoints of the output shape S

$$\mathcal{L}_{\mathrm{C}} = \sum_{i=1}^{m} \langle f_{\mathrm{T}} \cdot \frac{E_{\mathrm{I}}(R_{i})}{||E_{\mathrm{I}}(R_{i})||} \rangle$$

semantic

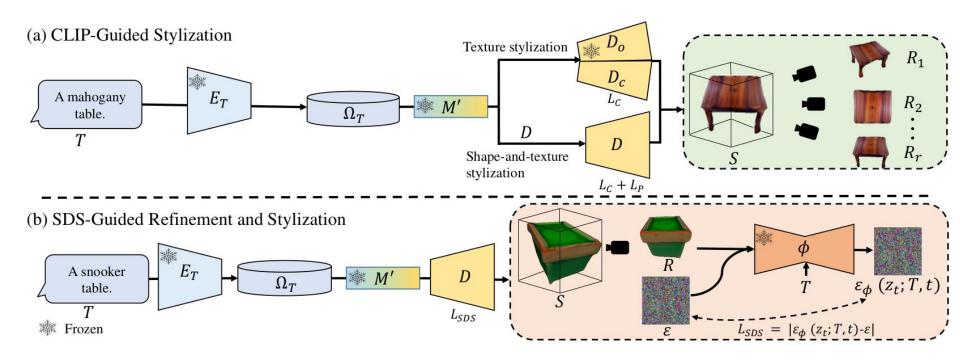
gap

Diverse 3D shape generation? - use diffusion prior

$$\mathcal{L}_{C} = \sum_{i=1}^{m} \langle (\tau f_{T \to I} + (1 - \tau) f_{T}) \cdot \frac{E_{I}(R_{i})}{||E_{I}(R_{i})||} \rangle$$

text-to-image feature by sampling a random noise

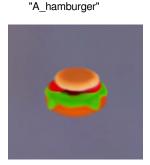
- The generative space and quality are still limited by the pre-trained SVR model in use
- Further refinement can be done using CLIP or SDS guided stylization/refinement



DreamStone sample outputs

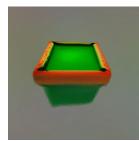
"A chair imitating avocado"

"A 3D model of an adorable cottage with a thatched roof"



"A chair imitating banana"

"Snooker table"



"A swivel chair with wheels"

"This is a bar stool with metal arches as a design

feature"

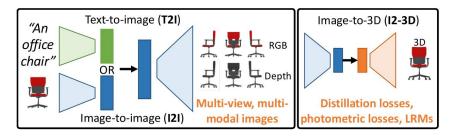
More results

https://liuzhengzhe.github.io/Dream Stone.github.io/

Text-to-3D Diffusion Models - Hybrid 3D

Point-E by OpenAl

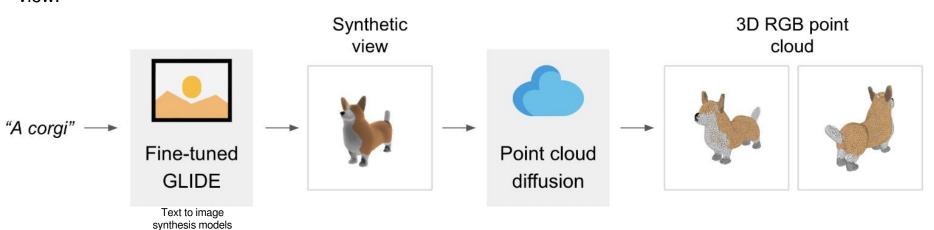
- a hybrid text-image-3D model
- Fast 3D generation (1-2 mins)



Step 1: generate a synthetic view conditioned on a text caption.

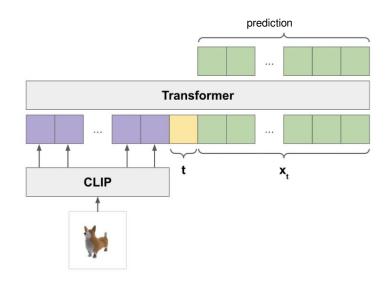
Step 2: generate a coarse point cloud (1,024 points) conditioned on the synthetic view.

Step 3: generate a fine point cloud (4,096 points) conditioned on the low-resolution point cloud and the synthetic view.



Text-to-3D Diffusion Models - Hybrid 3D

- Point Cloud Diffusion : Represent point cloud as a tensor of shape K × 6
 - (coordinates + colors)
- run each point in point cloud through a linear layer and obtain a K × D input tensor.
- run the timestep t through a small MLP, obtaining another D-dimensional vector to prepend to the context
- Run the image to CLIP (ViT-L/14 CLIP model)

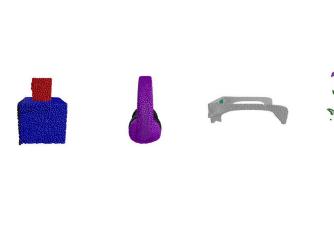


Pointcloud upsampler

same architecture as the base model, but with extra conditioning tokens for the low-resolution point cloud.

Text-to-3D Diffusion Models - Hybrid 3D

Sample outputs



"a corgi wearing a red santa hat"

"a multicolored rainbow pumpkin"

"an elaborate fountain"

"a traffic cone"

"a vase of purple flowers"



"a small red cube is sitting on top of a large blue cube. red on top, blue on bottom"

"a pair of 3d glasses, left lens is red right is blue"

"an avocado chair, a chair imitating an avocado"

"a pair of purple headphones"

"a yellow rubber duck"

"a red mug filled with coffee"

"a humanoid robot with a round head"

Conclusion

No 3D Data

Large text-image corpus

Large visionlanguage model

Pepper the aussie pup

CLIP

DALLE-2

ALIGN

IMAGEN

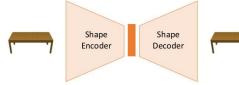
Prompt-based optimization of **differentiable** 3D representation

DMTet

Unpaired Text-3D Data

3D shape corpus

Learned 3D shape priors



Paired Text-3D Data

"a tall brown table"

"a brown table with four legs"

"a gray, cushioned chair"

Aligned text-3D embedding

