

COV877 Special Module on Visual Computing

Generative AI for Visual Content Creation: Image, Video, and 3D

Diffusion (Score-Based Part 1)

Instructor:

Dr. Lokender Tiwari

Research Scientist

Diffusion

Diffusion

There are several different ways to interpret diffusion models

- Score-Based
- DDPM, DDIM etc.

- GAN
- Normalizing Flows
- VAE

Limitations

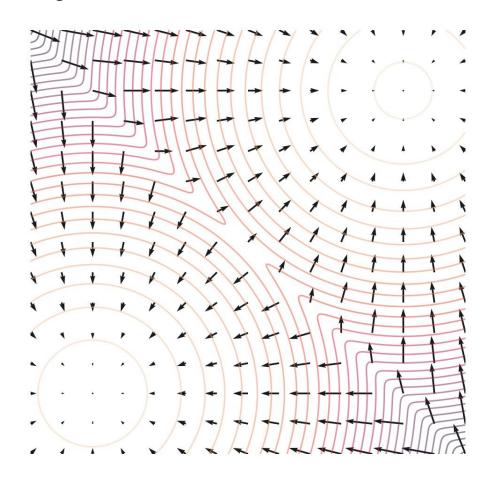
- strong restrictions on the model architecture to ensure a tractable normalizing constant for likelihood computation,
- rely on surrogate objectives to approximate maximum likelihood training (e.g. ELBO)
- require adversarial training, which is notoriously unstable and can lead to mode collapse (e.g. GAN)

New way to model probability density

The key idea

- Model the gradient of the log probability density function, using quantity often known as the score function
- Score-based models doesn't required to have a tractable normalizing constant
 - can be directly learned by score matching

Score function (the vector field) and density function (contours) of a mixture of two Gaussians.



^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

Dataset $\{\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N\}$ Independently drawn from data distribution

Generative Modeling: Fit a model to the data distribution so that we can generate new sample from it

How to model the probability distribution? one way is likelihood-based modeling

real-valued function parametrized by learnable parameter $f_{ heta}(\mathbf{x}) \in \mathbb{R}$

$$p_{ heta}(\mathbf{x}) = rac{e^{-egin{aligned} f_{ heta}(\mathbf{x})} }{Z_{ heta} \end{aligned}}$$

also known as unnormalized probabilistic model or energy based model

$$Z_{\theta} > 0$$

$$Z_{ heta} > 0$$
 $\int p_{ heta}(\mathbf{x}) \mathrm{d}\mathbf{x} = 1$

We can train by maximizing the log-likelihood of the data

$$\max_{ heta} \sum_{i=1}^N \log p_{ heta}(\mathbf{x}_i)$$

- this needs to be normalized PDF
- requires normalizing constant (Intractable)

To make the likelihood training possible

- NF models restrict model architechtures
- VAE approximate the normalizing constant using variational inference in VAE or MCMC sampling

Score function removes the requirement of intractable normalizing constants

Model the score function instead of density function

The *score function* of a distribution is given by

$$\nabla_{\mathbf{x}} \log p(\mathbf{x})$$

The model for the score-function is knowns as score-based model

[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

The model for the score-function is knowns as **score-based model**

$$\nabla_{\mathbf{x}} \log p(\mathbf{x})$$
 $\mathbf{s}_{\theta}(\mathbf{x})$

We learn score-based model that can be parametrized without worrying normalizing constant

$$\mathbf{s}_{ heta}(\mathbf{x}) pprox
abla_{\mathbf{x}} \log p(\mathbf{x})$$

For example,

$$\mathbf{s}_{ heta}(\mathbf{x}) =
abla_{\mathbf{x}} \log p_{ heta}(\mathbf{x}) = -
abla_{\mathbf{x}} f_{ heta}(\mathbf{x}) - \underbrace{
abla_{\mathbf{x}} \log Z_{ heta}}_{=0} = \underbrace{-
abla_{\mathbf{x}} f_{ heta}(\mathbf{x})}_{=0}$$

$$p_{ heta}(\mathbf{x}) = rac{e^{-f_{ heta}(\mathbf{x})}}{Z_{ heta}}$$

[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

[2] https://yang-song.net/blog/2021/score/

We can train score-based models by minimizing the Fisher divergence

$$\mathbb{E}_{p(\mathbf{x})}[\|\nabla_{\mathbf{x}} \log p(\mathbf{x}) - \mathbf{s}_{ heta}(\mathbf{x})\|_2^2]$$
 Compare the distance between GT data score and the score-based model \mathbf{v} . This is unknown

Solution?

Score-matching - Family of methods that can minimize the Fisher divergence without GT data score

Score matching objective can *directly be estimated on a dataset* and optimized with stochastic gradient descent, similar to the log-likelihood objective

^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] P. Vincent., A connection between score matching and denoising autoencoders, Neural computation, Vol 23(7), pp. 1661--1674. MIT Press. 2011.

^[4] Y. Song, S. Garg, J. Shi, S. Ermon., Sliced score matching: A scalable approach to density and score estimation, Uncertainty in Artificial Intelligence, pp. 574--584. 2020

$$\mathbb{E}_{p(\mathbf{x})}[\|
abla_{\mathbf{x}} \log p(\mathbf{x}) - \mathbf{s}_{ heta}(\mathbf{x})\|_2^2]$$

$$\mathbb{E}_{p_{\text{data}}} \left[\operatorname{tr}(\nabla_{\mathbf{x}}^2 \log p_{\theta}(\mathbf{x})) + \frac{1}{2} \|\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})\|_2^2 \right] + \operatorname{const}. \qquad \text{General multi-dimensional case}$$

$$L(\boldsymbol{\theta}) \triangleq \frac{1}{2} \mathbb{E}_{p_d}[\|\mathbf{s}_m(\mathbf{x}; \boldsymbol{\theta}) - \mathbf{s}_d(\mathbf{x})\|_2^2]$$

$$L(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \mathrm{C}$$
 Integration by parts (Full proof is in theorem 1 of [1]) $J(\boldsymbol{\theta}) \triangleq \mathbb{E}_{p_d} \left[\operatorname{tr}(\nabla_{\mathbf{x}} \mathbf{s}_m(\mathbf{x}; \boldsymbol{\theta})) + \frac{1}{2} \|\mathbf{s}_m(\mathbf{x}; \boldsymbol{\theta})\|_2^2 \right]$

Estimation of Non-Normalized Statistical Models by Score Matching

Aapo Hyvärinen

Helsinki Institute for Information Technology (BRU) Department of Computer Science FIN-00014 University of Helsinki, Finland

Editor: Peter Dayan

AAPO.HYVARINEN@HELSINKI.FI

- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] https://yang-song.net/blog/2019/ssm/
- [4] Y. Song, S. Garg, J. Shi, S. Ermon., Sliced score matching: A scalable approach to density and score estimation, Uncertainty in Artificial Intelligence, pp. 574--584. 2020

Score-Based Diffusion Model - How to sample?

Langevin Dynamics

- Provides an MCMC procedure to sample from a distribution using only its score function
- Trained score-based model $\mathbf{s}_{ heta}(\mathbf{x}) pprox
 abla_{\mathbf{x}} \log p(\mathbf{x})$
- Start from an arbitrary prior distribution and then iteratively generate

$$\mathbf{x}_0 \sim \pi(\mathbf{x})$$

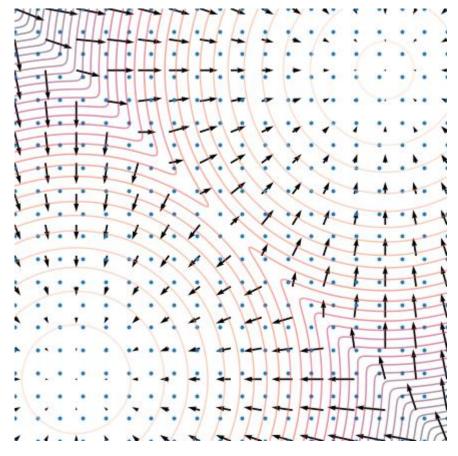
$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon
abla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \ \mathbf{z}_i, \quad i = 0, 1, \cdots, K$$

$$\mathbf{z}_i \sim \mathcal{N}(0,I)$$

$$\epsilon o 0$$

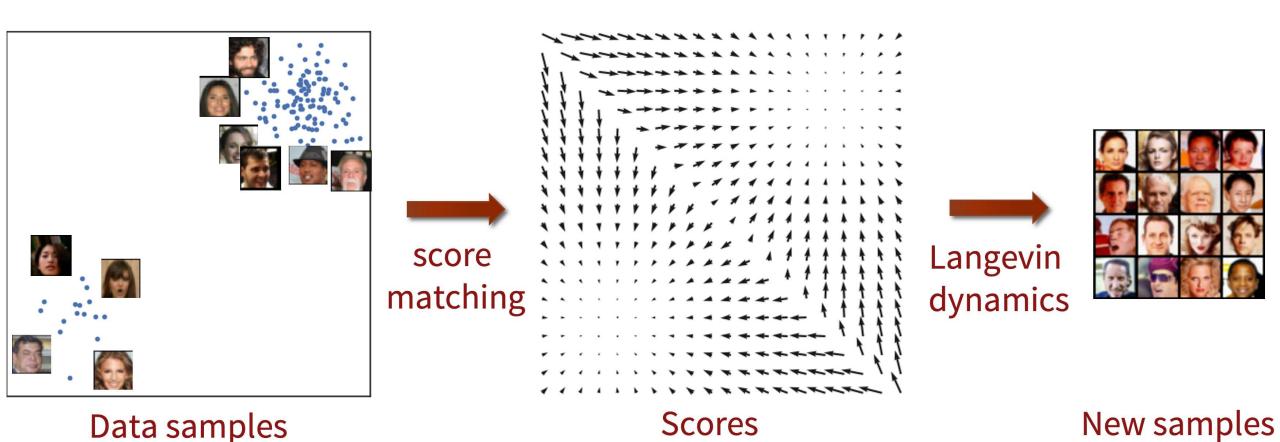
$$K \to \infty$$

Langevin Dynamics have access to only learned score function not the actualy PDF



- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] https://yang-song.net/blog/2019/ssm/
- [4] Y. Song, S. Garg, J. Shi, S. Ermon., Sliced score matching: A scalable approach to density and score estimation, Uncertainty in Artificial Intelligence, pp. 574--584. 2020

Score-Based Diffusion Model - Overall Appraoch



 $\{\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N\} \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x})$

 $\mathbf{s}_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$

^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] https://yang-song.net/blog/2019/ssm/

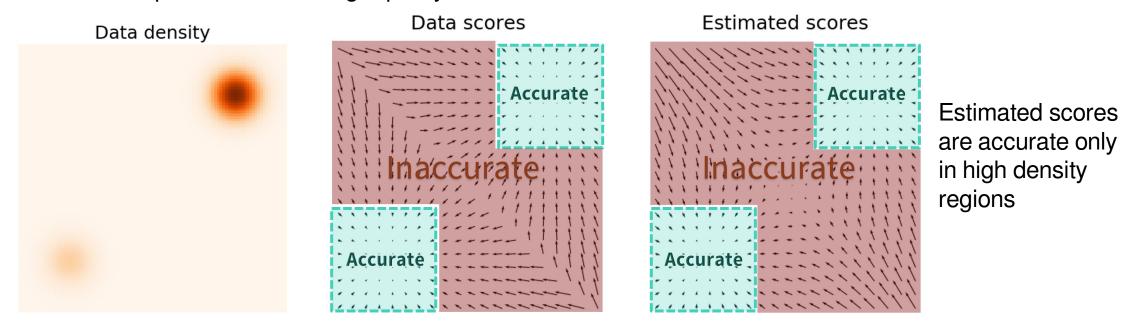
^[4] Y. Song, S. Garg, J. Shi, S. Ermon., Sliced score matching: A scalable approach to density and score estimation, Uncertainty in Artificial Intelligence, pp. 574--584. 2020

Score-Based Diffusion Model - Issues

Naive formulation ignores the low density region

$$\mathbb{E}_{p(\mathbf{x})}[\|\nabla_{\mathbf{x}}\log p(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x})\|_{2}^{2}] = \int p(\mathbf{x})\|\nabla_{\mathbf{x}}\log p(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x})\|_{2}^{2}d\mathbf{x}.$$
• Weighted

- If initial sample is in low density regions, an inaccurate score-based model will derail Langevin dynamics
 - Generated sample will not be of high quality

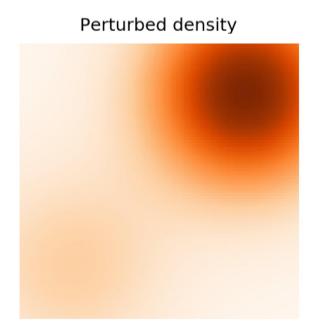


- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] https://yang-song.net/blog/2019/ssm/
- [4] Y. Song, S. Garg, J. Shi, S. Ermon., Sliced score matching: A scalable approach to density and score estimation, Uncertainty in Artificial Intelligence, pp. 574--584. 2020

Score-Based Diffusion Model - Noise conditioning

Solution?

Perturb the data points with noise, and use them to train the score-based models



What is the right amount of noise?



High Noise: can cover more low density regions, over corrupts data (distroy original distribution)

Low Noise: may not cover all low density regions, roughly retains original distribution

^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] https://yang-song.net/blog/2019/ssm/

^[4] Y. Song, S. Garg, J. Shi, S. Ermon., Sliced score matching: A scalable approach to density and score estimation, Uncertainty in Artificial Intelligence, pp. 574--584. 2020

Score-Based Diffusion Model - Noise conditioning

Solution? • Use multiple scale of noise perturbations

$$\sigma_1 < \sigma_2 < \cdots < \sigma_L$$
 Multi scale noise $p_{\sigma_i}(\mathbf{x})$ Perturbed data distribution $\mathbf{x} \sim p(\mathbf{x})$ $\mathbf{x} + \sigma_i \mathbf{z}$ $\mathbf{z} \sim \mathcal{N}(0, I)$ sampling from perturbed distribution $\mathbf{s}_{\theta}(\mathbf{x}, i) \approx \nabla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x})$ Noise Conditional Score-Based Model [3]

$$\sum_{i=1}^L \lambda(i) \mathbb{E}_{p_{\sigma_i}(\mathbf{x})}[\|
abla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x}) - \mathbf{s}_{ heta}(\mathbf{x},i)\|_2^2]$$

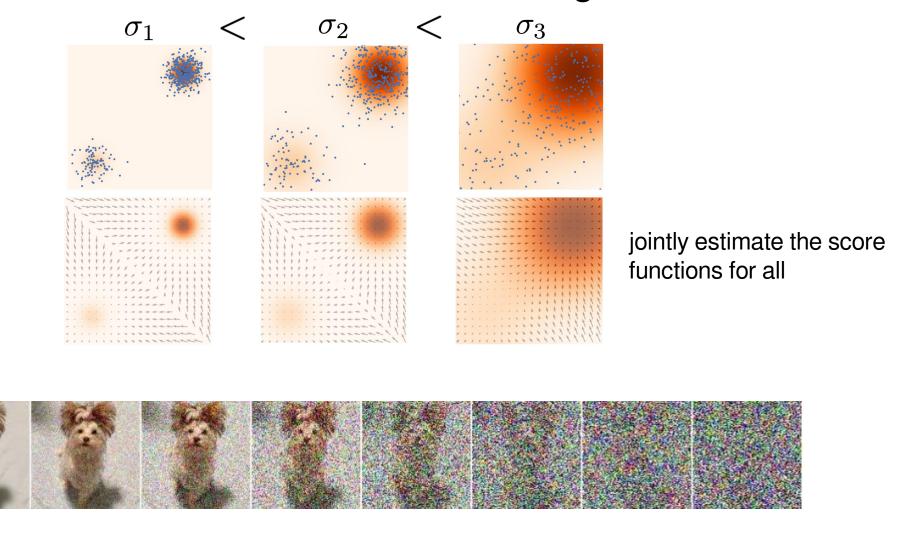
Weighted sum of Fisher divergences for all noise scales

^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems

Score-Based Diffusion Model - Noise conditioning



^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems

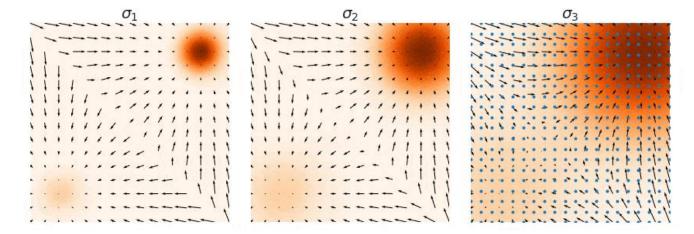
Score-Based Diffusion Model - Sampling from Noise Conditional Score Model

Annealed Langevin Dynamics

noise scale decreases (anneals) gradually over time

Note: In this algo σ_L is the smallest noise and σ_1 is the largest (opposite of what discussed in previous slides)

We first sample from noisiest score model using Langevin dynamics



Algorithm 1 Annealed Langevin dynamics.

```
Require: \{\sigma_i\}_{i=1}^L, \epsilon, T.

1: Initialize \tilde{\mathbf{x}}_0

2: for i \leftarrow 1 to L do

3: \alpha_i \leftarrow \epsilon \cdot \sigma_i^2/\sigma_L^2 \qquad \triangleright \alpha_i is the step size.

4: for t \leftarrow 1 to T do

5: Draw \mathbf{z}_t \sim \mathcal{N}(0, I)

6: \tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \ \mathbf{z}_t

7: end for

8: \tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T

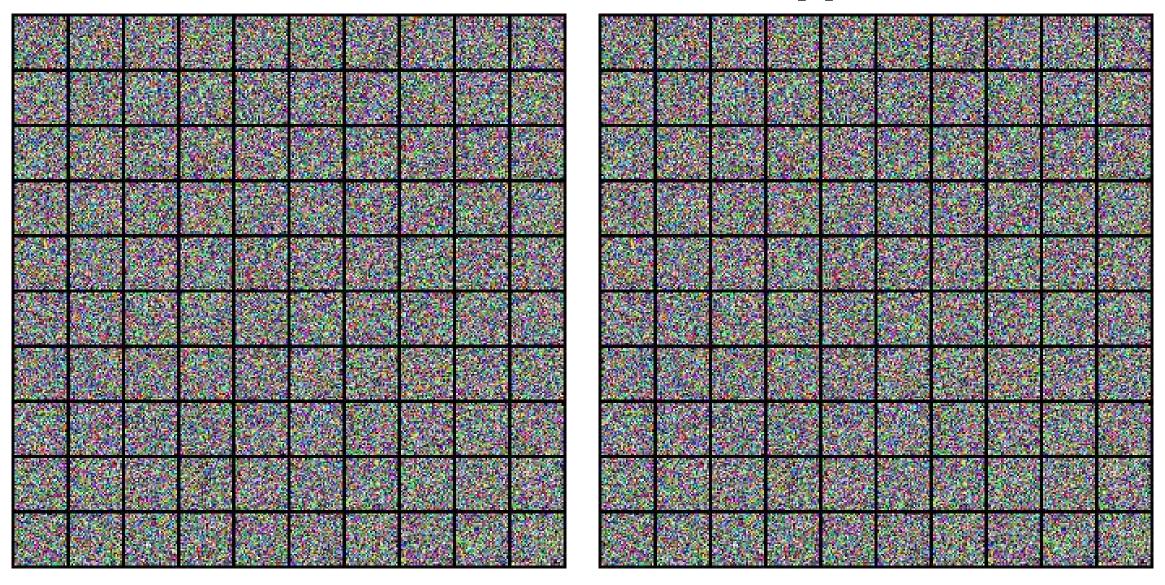
9: end for return \tilde{\mathbf{x}}_T
```

^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems

Score-Based Diffusion Model - Results from NCSN [3]



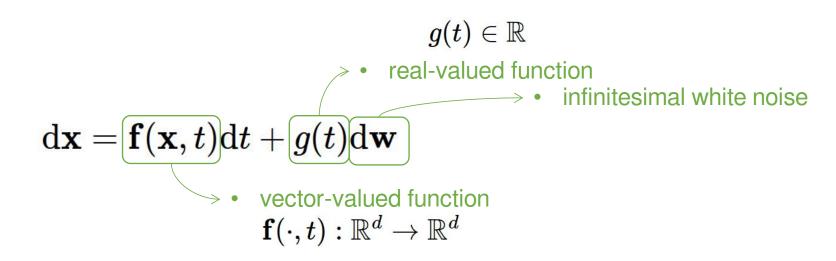
^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems

Score-Based Diffusion Model - with SDE

- Noise conditional perturbation of data distribution is crucial
- If we increase the number of noise scales to large number (infinity)
 - The perturbation process become a continuous time stochastic process
- Stochastic processes (Diffusion process is one of them)
 - are solutions to stochastic differential equations (SDEs)



^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems

^[4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Score-Based Diffusion Model - with SDE

$$g(t) \in \mathbb{R}$$
• real-valued function
• infinitesimal white noise
• vector-valued function
• $\mathbf{f}(\cdot,t): \mathbb{R}^d o \mathbb{R}^d$

The solution to the SDE is the continous collection of random variable $\{\mathbf{x}(t)\}_{t\in[0,T]}$

Think of these as stochastic trajectories w.r.t the growing time index t from 0 to T

$$p_t(\mathbf{x})$$
 probability density function of $\mathbf{x}(t)$ $t \in [0,T]$ analogous to $i=1,2,\cdots,L$ of noise scales $p_t(\mathbf{x}) = p_{\sigma_i}(\mathbf{x})$ $p_0(\mathbf{x}) = p(\mathbf{x})$ $p_T(\mathbf{x}) = p_{\sigma_L}(\mathbf{x})$ In the case of finite noise scale $p_T(\mathbf{x}) = \pi(\mathbf{x})$

- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems
- [4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Score-Based Diffusion Model - SDE with Gaussian Noise

$$g(t) \in \mathbb{R}$$
• real-valued function
• infinitesimal white noise
• vector-valued function
• $\mathbf{f}(\cdot,t): \mathbb{R}^d o \mathbb{R}^d$

SDE to perturb data with a Gaussian noise of mean zero and exponentially growing variance analogous to $\mathcal{N}(0,\sigma_1^2I),\mathcal{N}(0,\sigma_2^2I),\cdots,\mathcal{N}(0,\sigma_L^2I)$

$$\sigma_1 < \sigma_2 < \cdots < \sigma_L$$
 geometric progression

$$d\mathbf{x} = e^t d\mathbf{w}$$

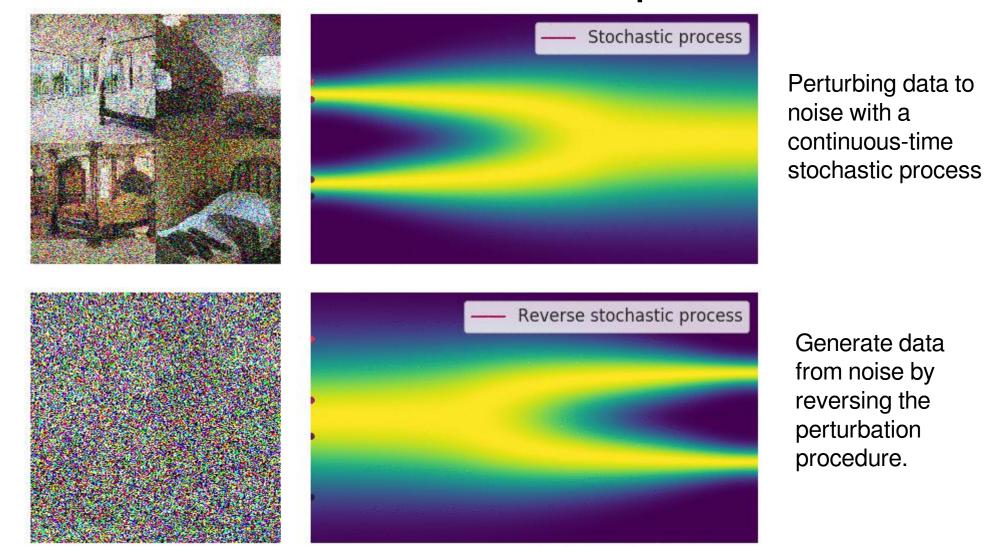
^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems

^[4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Score-Based Diffusion Model - Reverse SDE for Sample Generation



^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems

^[4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Score-Based Diffusion Model - Reverse SDE for Sample Generation

- Similar to the annealed Langevin dynamics to reverse the perturbation process
- Analogously reverse the perturbation process by reversing the SDE
- Every SDE has a corresponding reverse SDE

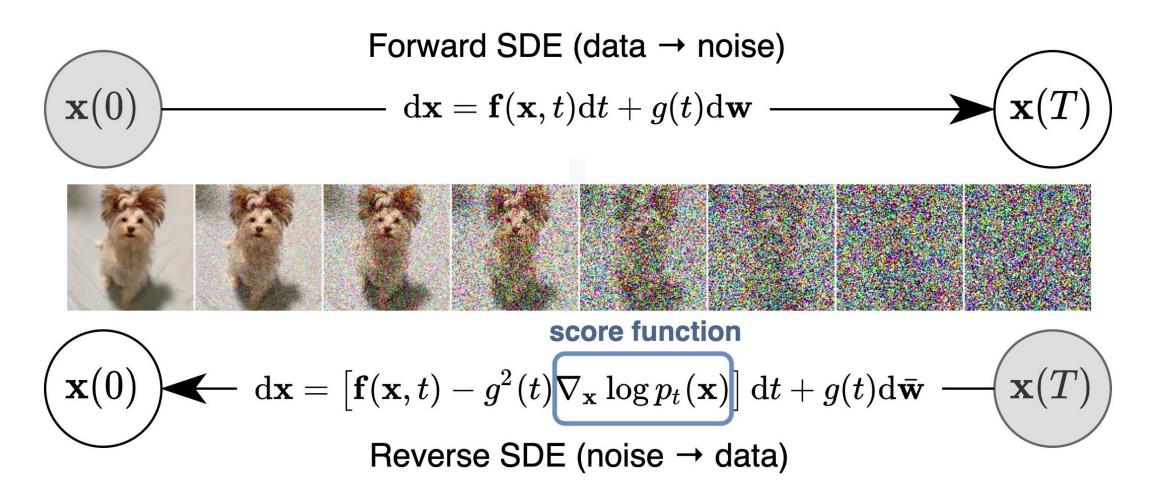
• negative infinitesimal time step since SDE needs to eb solved backward in time
$$au$$
 to au au

This is exactly the score function

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems
- [4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021
- [5] B.D. Anderson., Reverse-time diffusion equation models, Stochastic Processes and their Applications

Score-Based Diffusion Model - Reverse SDE for Sample Generation



- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems
- [4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021
- [5] B.D. Anderson., Reverse-time diffusion equation models, Stochastic Processes and their Applications

Score-Based Diffusion Model - Estimate Reverse SDE using Score Matching

Time-Dependent Score-Based Modeling $\mathbf{s}_{ heta}(\mathbf{x},t)$

$$\mathbf{s}_{ heta}(\mathbf{x},t) pprox
abla_{\mathbf{x}} \log p_t(\mathbf{x})$$
 analogous to

$$\mathbf{s}_{ heta}(\mathbf{x},i) pprox
abla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x})$$

$$\mathbb{E}_{t \in \mathcal{U}(0,T)} \mathbb{E}_{p_t(\mathbf{x})}[\lambda(t) \|
abla_{\mathbf{x}} \log p_t(\mathbf{x}) - \mathbf{s}_{ heta}(\mathbf{x},t) \|_2^2]$$

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x},t) - g^2(t)\mathbf{s}_{\theta}(\mathbf{x},t)]dt + g(t)d\mathbf{w}$$
 Once trained plug it into the reverse SDE

- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems
- [4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021
- [5] B.D. Anderson., Reverse-time diffusion equation models, Stochastic Processes and their Applications

Score-Based Diffusion Model - Generating New Samples

$$d\mathbf{x} = \sigma^t d\mathbf{w}, \quad t \in [0,1]$$

$$d\mathbf{x} = -\sigma^{2t}
abla_{\mathbf{x}} \log p_t(\mathbf{x}) dt + \sigma^t dar{\mathbf{w}}$$

$$d\mathbf{x} = -\sigma^{2t} s_{ heta}(\mathbf{x},t) dt + \sigma^t dar{\mathbf{w}}$$

Use numerical methods to solve reverse-time SDE (one such method is Euler-Maruyama) It simply discretize the SDE

replacing dt with Δt and $d\mathbf{w}$ with $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, g^2(t)\Delta t\mathbf{I})$

$$p_1 pprox \mathbf{N}igg(\mathbf{x}; \mathbf{0}, rac{1}{2}(\sigma^2-1)\mathbf{I}igg)$$
 draw first sample from the prior distribution, then solve reverse-tiem SDE

$$\mathbf{x}_{t-\Delta t} = \mathbf{x}_t + \sigma^{2t} s_{ heta}(\mathbf{x}_t, t) \Delta t + \sigma^t \sqrt{\Delta t} \mathbf{z}_t \ \mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

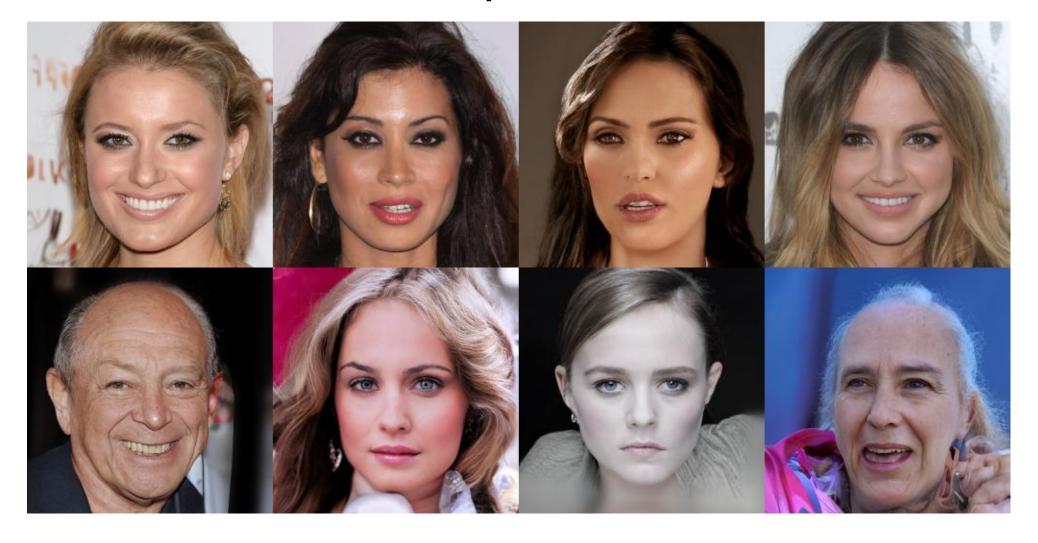
Euler-Maruyama is similar to Langevin dynamics: both update by following score functions perturbed with Gaussian noise.

- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems
- [4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021
- [5] B.D. Anderson., Reverse-time diffusion equation models, Stochastic Processes and their Applications

Score-Based Diffusion Model - Sample Results

- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems
- [4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021
- [5] B.D. Anderson., Reverse-time diffusion equation models, Stochastic Processes and their Applications

Score-Based Diffusion Model - Sample Results



- [1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.
- [2] https://yang-song.net/blog/2021/score/
- [3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems
- [4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021
- [5] B.D. Anderson., Reverse-time diffusion equation models, Stochastic Processes and their Applications

Probability Flow ODE

Sampling based on Langevin Dynamics and SDE solvers does not provide way to compte exact log-likelihood of score based generative models

Any SDE can be converted to an ODE (Ordinary differential equation)

- The corresponding ODE of an SDE is named probability flow ODE
- This probability flow ODE formulation has several unique advantages.
- Probability flow ODE becomes a special case of a neural ODE.
 - It is an example of continuous normalizing flows, since the probability flow ODE converts a data distribution to a prior noise distribution
- it shares the same marginal distributions as the SDE and is fully invertible.

^[1] A. Hyvarinen. Estimation of non-normalized statistical models by score matching Journal of Machine Learning Research, Vol 6(Apr), pp. 695--709. 2005.

^[2] https://yang-song.net/blog/2021/score/

^[3] Y. Song, S. Ermon., Generative Modeling by Estimating Gradients of the Data Distribution, Advances in Neural Information Processing Systems

^[4] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

^[5] B.D. Anderson., Reverse-time diffusion equation models, Stochastic Processes and their Applications