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Variational Autoencoder (VAE)



Variational Autoencoders 

• Probabilistic Generative Model  ( like normalizing flows )
• Learn distribution  푃�(�) over data
• Post training we can sample from this distribution 



Latent Variable Model

• An indirect approach to represent probability distribution of data 푃�(�)  

joint distribution of data & 
unobserved latent variable

marginalization

conditional probability
prior

likelihood

complex distributions 푃�(�)  can be represented using simple 푃�(�|�) and 푃�(�)     

e.g. Mixture of Gaussians



Latent Variable Model - Mixture of Gaussian Example 

• � is a discrete latent variable with categorial prior distribution 푃�(�)     

• Likelihood  푃�(�|� = �) of data � given � = � is normally 
distributed with mean �� and variance  ��

2   

Marginalization



Nonlinear Latent Variable Model

Both data x and latent variable � are continous and multivariate 

likelihood mean is a nonlinear function of the latent variable



Nonlinear Latent Variable Model
• Both data x and latent variable � are continous and multivariate 

to get Pr(x), we integrate the 3D 
volume over the dimension z

mean f [z, ϕ]



Nonlinear Latent Variable Model - Generation from nonlinear latent variable model
• Both data x and latent variable � are continous and multivariate 



Nonlinear Latent Variable Model - Training 
• Maximize the log-likelihood w.r.t the model parameters over training set

• For simplicity assume the variance term is known

• Goal is to learn Φ

• Unfortunately, this is intractable. 
• There is no closed-form expression for the integral and no easy way to evaluate it for a particular value of x



Nonlinear Latent Variable Model - ELBO
• Define lower bound on the log-likelihood 
• a function which is always less than or equal to the log-likelihood for a given Φ  and other parameters
• ELBO (Evidence Lower Bound) 



Nonlinear Latent Variable Model - ELBO
• ELBO (Evidence Lower Bound) - Derivation

Jensen Inequality
(Concave Function)

Expansion



Nonlinear Latent Variable Model - ELBO
• ELBO (Evidence Lower Bound) - Derivation

Evidence lower bound

using 
Jensen’s 
inequality

• In practice q(z) is parameterized by θ 

multiply & divide by arbitrary 
probability distribution over 
latent i.e.,  q(z) 

maximize w.r.t 
both  θ and  Φ



Nonlinear Latent Variable Model - ELBO

• Objective : maximize the log-likelihood (black curve) with respect to the parameters ϕ 
• For fixed θ, we get a function of ϕ (two colored curves for different values of θ)
• The log-likelihood can be increased by either ways



Nonlinear Latent Variable Model - ELBO
• Tight ELBO - ELBO concide with the likelihood function

• for a fixed Φ

conditional 
probability

Kullback-Leibler (KL) Divergence
(Measures the distance between 

two distributions)

posterior 
distribution

the bound is tight, when 
KL distance is zero i.e., 



Nonlinear Latent Variable Model - ELBO
• ELBO  as reconstruction loss - KL distance to prior 

conditional 
probability

reconstruction 
accuracy

degree of agreement 
between auxiliary 
distribution and prior

This formulation is generally used in the variational autoencoder



Nonlinear Latent Variable Model - ELBO
• Tight ELBO - ELBO concide with the likelihood function

• for a fixed Φ

Baye’s rule

intractable, we can’t 
evaluate thisSolution ?

• Solution : make a variational approximation
• Choose a simple auxiliary distribution  q(z | θ) to approximate true posterior

multivariate normal distribution 
mean μ and diagonal variance Σ

during training the goal is to find values of μ and  Σ
such that the normal distrubution is close to the true posterior Pr(z | x)  =  minimize the KL divergence 

Neural network with params θ



The Variational Autoencoder

Solution : approximate it by sampling i.e., take a Monte Carlo estimate

Dimensionality of 
the latent space

Intractable Integral



The Variational Autoencoder



The Variational Autoencoder



The Variational Autoencoder



Vector Quantised
Variational Autoencoder (VAE)



The VQVAE - Vector Quantized VAE

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

The Vector Quantised- Variational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: 

• the encoder network outputs discrete, rather than continuous codes
• the prior is learnt rather than static



The VQVAE - Vector Quantized VAE

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

Key Idea :

• Incorporate ideas from vector quantisation (VQ)
• VQ method allows model to circumvent issues of “posterior collapse” 
• where the latents are ignored when they are paired with a powerful autoregressive decoder =
• typically observed in the VAE framework. 

VAE setup
• Posterior Distribution

• Prior Distribution 

• Decoder with distribution

Posterior and prior are assumed normally distributed 



The VQVAE - Vector Quantized VAE

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

VQ-VAE:

• Discrete latent variables
• New way of training leveraging the concepts from vector quantisation (VQ)
• Posterior and prior distributions are categorical



The VQVAE - Formulation

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

Discrete Latent Variables

Define a latent embedding space
K : Size of the discrete latent space  ( K-way categorical ) 

D is the dimensionality of each latent embedding vector

The encoder takes an input and produce output

Discrete latent variable is then calculated by a nearest neighbour look-up using a shared embedding space



The VQVAE - Formulation

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

Decoder input is the embedding vector calculated from NN search

the posterior is a categorical distribution as one-hot



The VQVAE - Training

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).



The VQVAE - Training

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

There is no real gradient defined for the below equation, 

however we approximate the gradient similar to the straight-through estimator 
• copy gradients from decoder input to encoder output .

• During forward computation the nearest embedding is passed to the decoder, 

• During the backwards pass the gradient is passed unaltered to the encoder

Will this work ? Why?
• the output representation of the encoder and the input to the decoder share the same D dimensional space,

• the gradients contain useful information for how the encoder has to change its output to lower the reconstruction loss.



The VQVAE - Training

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

• the gradient must push the encoder’s output to be discretised differently in the next forward pass, 
because the assignment will be different

• Total Loss



The VQVAE - Training

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

• the gradient must push the encoder’s output to be discretised differently in the next forward pass, 
because the assignment will be different

• Total Loss reconstruction loss
Due to the straight-through gradient estimation of 
mapping from ze(x) to zq (x), the embeddings ei receive no 
gradients from the reconstruction loss

VQ objective uses the l2 error to move the 
embedding vectors ei towards the encoder 
outputs ze(x)

Commitment Loss
Volumne of the embedding space can grow 
arbitrarily. To make sure the encoder 
commits to an embedding and its output 
does not grow.



The VQVAE - Results

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

Left: ImageNet 128x128x3 images, right: reconstructions from a VQ-VAE with a 32x32x1
latent space, with K=512.


