CcOVa877
Special Module on Visual Computing

Generative Al for Visual Content Creation: Image, Video, and 3D

StyleGAN, Normalizing Flows and VAE

Instructor:
Dr. Lokender Tiwari
Research Scientist



StyleGAN



Image Translation - StyleGAN

« StyleGAN controls the output image at different scales and separates stvle from noise
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Image Translation - StyleGAN

» Automatically learn, unsupervised separation
of high-level attributes (e.g., pose and
identity when trained on human faces) and

» Stochastic variation in the generated images
(e.g., freckles, hair)

» Provides intuitive, scale-specific control of
the synthesis

Key Philosophy

 control the strength of image
features at different scales
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Image Translation - StyleGAN

« Map the input to an intermediate latent space W
» Controls the generator through adaptive instance

normalization (AdalN) at each convolution layer
« (Gaussian noise is added after each convolution

“A” learned affine transform
“B” applies learned per-channel
scaling factors to the noise input

X — M(Xz‘)
o(x;)

AdaIN(x;,y) = ¥s.i + ¥b,i

Latent z € Z

v

Normalize

lMapping

network f

FC
FC
FC
FC
FC
FC
FC
FC

v

—>» AdalN

—>» AdalN

—>» AdalN

—>» AdalN

Synthesis network g

Const 4x4x512

style : 2

I
Conv 3x3

style : .

i 4x4

Upsample
|
Conv 3x3

style : =

I
Conv 3x3

style : L

i 8x8

(b) Style-based generator

Karras, T., Laine, S., & Aila, T. (2019). A style based generator architecture for generative adversarial networks, CVPR 2019

Noise




Image Translation - StyleGAN Latent z € Z Noise

Synthesis network
Properties of StyleGAN v L e
: . . Normalize Const 4x4x512
« Mapping network and affine transformations focus on Mano;
- apping @<—B
drawing samples for each style from a learned network f style
distribution A EE
» Synthesis network generates a novel image based on FC Conv 3x3
a collection of styles. - FC o @(7 B
» The effects of each style are localized in the network, FC A 3> AdaIN
i.e., modifying a specific subset of the styles can be °C i i
expected to affect only certain aspects of the image. ==
Reason ? = Upsalmple
FIC Conv 3%3
AdalN . @(—
FC style ~ o
A —>| AdaIN
|t modifies the relative importance of features for the subsequent ,L '
convolution operation, (not depending on original statistics ) CO“V: i =
style
« Each style controls only one convolution before being overridden AN R o
by the next AdalN operation. J,

(b) Style-based generator

Karras, T., Laine, S., & Aila, T. (2019). A style based generator architecture for generative adversarial networks, CVPR 2019



Image Translation - StyleGAN

Another reason - Style Mixing

Run two latent codes z1, z2 through the
mapping network,

the corresponding w1, w2 control the styles
so that w1 applies before the crossover
point and w2 after it.

Coarse [4x4-8x8]
Middle [16x16-32x32]
Fine [64x64-1024x1024]

Improves the localization considerably,
( improved FIDs ) in scenarios where multiple
latents are mixed at test time
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Image Translation - StyleGAN
Another reason - Style Mixing

* Run two latent codes z1, z2 through the
mapping network,

 the corresponding w1, w2 control the styles
so that w1 applies before the crossover
point and w2 after it.

to prevents network from assuming that adjacent
styles are correlated.

» Coarse [4x4-8x8]
« Middle [16x16-32x32]
* Fine [64x64-1024x1024]

« Improves the localization considerably,
( improved FIDs ) in scenarios where multiple
latents are mixed at test time

=
@
z
=
g
7

Coarse styles from source B

Middle styles from source B

jas]
=
=1
©
=
=




Image Translation - StyleGAN

Stochastic Variations

* Many features are stochastic in nature such as the
exact placement of hairs, stubble, freckles, or skin
pores

» Adding noise helps in maintaining stochasticity

(a) Noise is applied to all layers.

(b) No noise.

(c) Noise in fine layers only (642 - 10242).
(d) Noise in coarse layers only (42 — 322)




Image Translation - StyleGAN ( Disentanglement Analysis )

« Common Definition : latent space that consists of linear subspaces, each of which controls one factor of variation
« But StyleGAN doesn’t explicitly learn factor of variations

« Perceptual Path Length and Linear Separability

Perceptually-based pairwise image distance : a weighted difference between two VGG16 embeddings

Entangled Space : Features that are absent in either endpoint may appear in the middle of a linear interpolation path

1 Less curved latent space should result
— d(G(slerp(z1, z2; t)), in perceptually smoother transition than

Iz =E |
G(slerp(z1,22; t + E)))] a highly curved latent space

€

z1,22 ~ P(z),t ~U(0,1), G generator
e = 10~

by = B [ d(glern(f(z1), £(z2); 1)),

gllerp(f(21). (z2); t +€)|



Image Translation - StyleGAN ( Disentanglement Analysis )

Method Path length Sel}*}r o A low value suggests consistent
full end bility latent space directions for the
B Traditional generator Z 412.0 415.3 10.78 corresponding factor(s) of variation.
D Style-based generator WV 446.2 376.6 3.61
E + Add noise inputs W 200.5 160.6 3.54 final separability score as
+ Mixing 50% W 15 182.1 3.51 exp(2; H(Y/Xj), where i
F + Mixing 90% W 234.0 1959 3779 enumerates the 40 attributes.

If a latent space is sufficiently disentangled, it should be possible to find
direction vectors that consistently correspond to individual factors of variation.

Measuring how well the latent-space points can be separated into two distinct
sets via a linear hyperplane,
 ....each set corresponds to a specific binary attribute of the image.

Train an aukxilliary classifiers on 40 attributes from Celeba-HQ dataset
generate 200,000 images withz ~ P(z)
Retain the half 100k latent-space vectors
Fit a Linear SVM
compute the conditional entropy H(Y |X) where X = classes predicted by the SVM and Y = classes predicted
by the pre-trained classifier.



Normalizing Flows



Normalizing Flows - 1D Toy Example

GAN
« (Can generate new samples
» Evaluating the probability that the generated sample belongs to the same dataset isn’t straightforward

Normalizing Flows
» Probabilistic generative model
« Learns probability model by transformaing a simple distribution to a complex



Normalizing Flows - 1D Toy Example
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Normalizing Flows - 1D Toy Example

Probability of a data point x under transformed distribution ="t

» The probability density will decrease in areas that are
stretched by the function
» since the area under the new distribution remains one

» The degree to which a function f[z, @] stretches or
compresses its input depends on the magnitude of its
gradient
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Normalizing Flows - 1D Toy Example

The forward mapping (base density to model density) is called generative direction x = flz, @]

The inverse mapping (model density to base density ) is called normalizing direction =z = f _1[x, ]

» base density is the standard normal distribution

30)5 Model density b) Base density
3.0
5 «
o~
No
Q.
no— -l S
3.0 7 30 -3.0 P 3.0 -3.0 2 3.0

« To draw samples we need the forward mapping,
« To measure the likelihood, we need to compute the inverse z = f-7 [x, ¢].



Normalizing Flows - Training Objective

Find parameters ¢ that maximize the likelihood of the training data or equivalently minimize the negative log-
likelinood:

I
¢ = argmax HP?(TJ(;S)]
¢ i1
' _ |oflz el
= argmin Zlog{Pr(mﬂcb)}] Pr(z|¢p) = ‘ o - Pr(z)
¢ Li=1

i ..
= argmin Zlog [| (}f[‘zi " ¢ |] — log [Pr(,z?;)}]

¢ 1=1



Normalizing Flows - General Scenario

« How to get a new sample ?
z* ~ Pr(z)

« Pr(z) multivariate base density
» Pr(x) multivariate model density

D x D Jacobian Matrix

|
|
[
|
Deep Neural Network !
|
|
|

x* = f[z*, @]
z € RD Oz, ¢] |~
‘= £lz,0] e Prixis) = |75 pria

Forward Mapping
X = f[za (35] — fK [le [ X f2 [fl[za qbl}a ¢’2] y * e e qbKl] ) ¢K]
Inverse Mapping / Normalizing Direction

2= x, ) = £ [F [ [ I, ¢KL¢K1]=“"’52]’¢1}

Gradually move/flow data density towards normal distribution Pr(z)



Normalizing Flows - General Scenario

Inverse mapping
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Normalizing Flows - General Scenario (Training)

« Dataset {x;}
« Training Objective : Maximize the probabiliy of each data sample x;
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Normalizing Flows - Invertible Layers

Invertible Matrix
Linear Flows:  f[h]=p + W « expensive, not sufficiently expressive

« normal to normal mapping (input is normally
distributed)
« difficult to map to arbitrary density using linear flows alone

pointwis% nonlinear function

Elementwise/Nonlinear Flow f[h] — [f[hl, @|,flha, @], .. . fhp, ¢]]

 could be fixed nonlinearity (leaky ReLU)
« parametric one-to-one mapping

jacobian is a diagonal

( since dthinput only affects dth output )



Normalizing Flows - Invertible Layers

* Elementwise flows are nonlinear but don’t mix a) ___ Forward mapping b) __ Inverse mapping
input dimensions,
« (Can’t capture correlations between variables. h, g'd hy( ™ b/
— ¢[hy] ¢[h,]
* Elementwise flows alternated with linear
flows can be used to model more , ,
complex transformations h, g [hz, qb{hl]} hy h; —Gl [h%,, ¢[h@7 hy
L Output B Output
u u n u u
Coupling Flows : "Pr 4 P d
S h’1 = hy h; = h)
h = |hy.h _
[ 112 ] h, = g{hQ7 gb[hl]} h, = g |:h/27 Qb[hl]}

« To make a more general transformation,
» the elements of h are randomly shuffled using permutation matrices between layers,
« every variable is ultimately transformed by every other

e.g., images, the channels are divided and permuted between layers using 1x1 convolutions



Normalizing Flows - Autoregressive Flows

Forward mapping

a)

Autoregressive flows are a
generalization of coupling flows
that treat each input dimension

as a separate “block
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Normalizing Flows - Residual Flows
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Normalizing Flows - Multi-Scale Flows
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Normalizing Flows - Glow

Affine coupling
+
Multi-scale

affine coupling layer
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(b) Multi-scale architecture (Dinh et al., 2016).




Normalizing Flows - Glow

Table 1: The three main components of our proposed flow, their reverses, and their log-determinants.
Here, x signifies the input of the layer, and y signifies its output. Both x and y are tensors of
shape [h x w x ¢| with spatial dimensions (h, w) and channel dimension ¢. With (4, j) we denote
spatial indices into tensors x and y. The function NN() is a nonlinear mapping, such as a (shallow)
convolutional neural network like in ResNets (He et al., 2016) and RealNVP (Dinh et al., 2016).

Description Function Reverse Function Log-determinant
Actnorm. Vi,j:¥ij =80%x;;+b | Vi,j:x;; =(y:; —b)/s | h-w-sun(log|s|)
See Section 3.1.
Invertible 1 x 1 convolution. | Vi,j :y;; = Wx; j Vi oy g =Wty s h-w - log | det(W)]
W : [c X (] or
See Section 3.2, h - w - sum(log |s|)
(see eq. (10))

Affine coupling layer. %55 = gplit{x) Ya,¥p = split(y) sum(log(|s|))
See Section 3.3 and (logs,t) = NN(x3) (logs,t) = NN(y})
(Dinh et al., 2014) s = exp(logs) s = exp(logs)

Yo =80 Xa +t Xqa = (ya —t)/s

Yo = Xp Xp =Y¥b

y = concat(ya,¥s) X = concat(Xg, Xp)




Normalizing Flows - Glow

actnorm layer
» performs an affine transformation of the activations using a scale and
bias parameter per channel, similar to batch normalization.

« These parameters are initialized such that the post-actnorm activations
per-channel have zero mean and unit variance given an initial
minibatch of data.

« This is a form of data dependent initialization

affine coupling layer

f

invertible 1x1 conv

?

actnorm

T




Normalizing Flows - Glow

Invertible 1x1 convolution
* Invertible 1 x 1 convolution, where the weight matrix is initialized as a

random rotation matrix.
* 1 x 1 convolution with equal number of input and output channels is a

generalization of a permutation operation

The log-determinant of an invertible 1 x 1 convolutionofa h x w x ¢
tensor h with ¢ x ¢ weight matrix W is

2D(h; W
log det(dconv (h; )>|:h-w-10g|det(W)|

dh

W = PL(U + diag(s))

log | det(W)| = sum(log |s|)

affine coupling layer

?

invertible 1x1 conv

?

actnorm

T




Normalizing Flows - Glow

lass Invertiblelx1Conv(nn.M
. . __init_ (self, dim}:
Invertible 1x1 convolution super(). init_ ()
i i 1 5 .dim = dim
» Invertible 1 x 1 convolution, where the weight it e e
matrix is initialized as a random rotation matrix. P, L, U= torch.lu_unpack(*Q.lu())
: - . self.P = P
- 1 x 1 convolution with equal number of input and s
output channels is a generalization of a self.s

. . self.U
permutation operation

le W from its pieces i :
.tril(self.L, diagonal=-1) + torch.diag(torch.ones(self.dim))
torch.triu(self.U, diagonal=1)
self.P@L @ (U + torch.diag(self.5))

ratirn
recurn w

) | —h- -w- lOg | det(W)| def forward(self, x):

The log-determinant of an invertible 1 x 1 convolution
of a h x w x ctensor h with ¢ x ¢c weight matrix W is

log

W = self. assemble W()
z=x@H
log det = torch.sum(torch.log(torch.abs(self.5)))

W = PL(U + diag(s)) return z, log det

dh

det (d conv2D(h; W)

def backward(self, z):
log | det(W)| = sum(log |s W = self. assemble W()
g| ( )| ( g| |) W inv = torch.inverse(Ww)
X=Z @ W inv
log det = -torch.sum{torch.log{torch.abs{self.5)))
return x, log det




Normalizing Flows - Glow

Table 1: The three main components of our proposed flow, their reverses, and their log-determinants.
Here, x signifies the input of the layer, and y signifies its output. Both x and y are tensors of
shape [h x w x ¢| with spatial dimensions (h, w) and channel dimension ¢. With (4, j) we denote
spatial indices into tensors x and y. The function NN() is a nonlinear mapping, such as a (shallow)
convolutional neural network like in ResNets (He et al., 2016) and RealNVP (Dinh et al., 2016).

Description Function Reverse Function Log-determinant
Actnorm. Vi,j:¥ij =80%x;;+b | Vi,j:x;; =(y:; —b)/s | h-w-sun(log|s|)
See Section 3.1.
Invertible 1 x 1 convolution. | Vi,j :y;; = Wx; j Vi oy g =Wty s h-w - log | det(W)]
W : [c X (] or
See Section 3.2, h - w - sum(log |s|)
(see eq. (10))

Affine coupling layer. %5, %5 = gplit{x) Ya,¥p = split(y) sum(log(|s|))
See Section 3.3 and (logs,t) = NN(x3) (logs,t) = NN(y})
(Dinh et al., 2014) s = exp(logs) s = exp(logs)

Yo =8OXq +t Xqa = (ya —t)/s

Yo = Xp Xp =Yb

y = concat(ya,¥s) X = concat(X,. Xp)




Glow

Normalizing Flows -
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Normalizing Flows - Glow

Linear interpolation in latent space between real images
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Normalizing Flows - Glow

Semantic Manipulation




