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Image Translation - StyleGAN
•  StyleGAN controls the output image at different scales and separates style from noise

• latent variable injected to the inputs 
of the generator at various points 

• to modify the current 
representation at these points in 
different ways.

Karras, T., Laine, S., & Aila, T. (2019). A style based generator architecture for generative adversarial networks, CVPR 2019



• Automatically learn, unsupervised separation 
of high-level attributes (e.g., pose and 
identity when trained on human faces) and 

• Stochastic variation in the generated images 
(e.g., freckles, hair)

• Provides intuitive, scale-specific control of 
the synthesis

Key Philosophy

• control the strength of image 
features at different scales

Image Translation - StyleGAN

Karras, T., Laine, S., & Aila, T. (2019). A style based generator architecture for generative adversarial networks, CVPR 2019



• Map the input to an intermediate latent space W
• Controls the generator through adaptive instance 

normalization (AdaIN) at each convolution layer
• Gaussian noise is added after each convolution

“A” learned affine transform
“B” applies learned per-channel 
scaling factors to the noise input

Image Translation - StyleGAN

Karras, T., Laine, S., & Aila, T. (2019). A style based generator architecture for generative adversarial networks, CVPR 2019



Properties of StyleGAN
• Mapping network and affine transformations focus on 

drawing samples for each style from a learned 
distribution

• Synthesis network generates a novel image based on 
a collection of styles. 

• The effects of each style are localized in the network, 
i.e., modifying a specific subset of the styles can be 
expected to affect only certain aspects of the image.

AdaIN

• It modifies the relative importance of features for the subsequent 
convolution operation, (not depending on original statistics )

• Each style controls only one convolution before being overridden 
by the next AdaIN operation.

Reason ?

Image Translation - StyleGAN

Karras, T., Laine, S., & Aila, T. (2019). A style based generator architecture for generative adversarial networks, CVPR 2019



Another reason - Style Mixing
• Run two latent codes z1, z2 through the 

mapping network, 
• the corresponding w1, w2 control the styles 

so that w1 applies before the crossover 
point and w2 after it. 

• Coarse [4x4–8x8]
• Middle [16x16–32x32]
• Fine [64x64–1024x1024]

• Improves the localization considerably, 
( improved FIDs ) in scenarios where multiple 
latents are mixed at test time

Image Translation - StyleGAN



Another reason - Style Mixing
• Run two latent codes z1, z2 through the 

mapping network, 
• the corresponding w1, w2 control the styles 

so that w1 applies before the crossover 
point and w2 after it. 

• Coarse [4x4–8x8]
• Middle [16x16–32x32]
• Fine [64x64–1024x1024]

• Improves the localization considerably, 
( improved FIDs ) in scenarios where multiple 
latents are mixed at test time

Image Translation - StyleGAN

to prevents network from assuming that adjacent 
styles are correlated.



Stochastic Variations

• Many features are stochastic in nature such as the 
exact placement of hairs, stubble, freckles, or skin 
pores

• Adding noise helps in maintaining stochasticity

(a) Noise is applied to all layers. 
(b) No noise. 
(c) Noise in fine layers only (642 – 10242). 
(d) Noise in coarse layers only (42 – 322)

Image Translation - StyleGAN



Image Translation - StyleGAN  ( Disentanglement Analysis )

• Common Definition :  latent space that consists of linear subspaces, each of which controls one factor of variation
• But StyleGAN doesn’t explicitly learn factor of variations

• Perceptual Path Length  and Linear Separability 

Perceptually-based pairwise image distance :  a weighted  difference between two VGG16 embeddings

Entangled Space : Features that are absent in either endpoint may appear in the middle of a linear interpolation path

Less curved latent space should result 
in perceptually smoother transition than 
a highly curved latent space

generator



Image Translation - StyleGAN  ( Disentanglement Analysis )

• If a latent space is sufficiently disentangled, it should be possible to find 
direction vectors that consistently correspond to individual factors of variation. 

• Measuring how well the latent-space points can be separated into two distinct 
sets via a linear hyperplane, 

• ....each set corresponds to a specific binary attribute of the image.

• Train an auxilliary classifiers on 40 attributes from Celeba-HQ dataset

• Retain the half 100k latent-space vectors 
• Fit a Linear SVM 
• compute the conditional entropy H(Y |X) where X = classes predicted by the SVM and Y = classes predicted 

by the pre-trained classifier.

A low value suggests consistent 
latent space directions for the 
corresponding factor(s) of variation.

final separability score as
exp(∑i H(Yi|Xi)), where i 
enumerates the 40 attributes.



Normalizing Flows



GAN 
• Can generate new samples
• Evaluating the probability that the generated sample belongs to the same dataset isn’t straightforward

Normalizing Flows
• Probabilistic generative model
• Learns probability model by transformaing a simple distribution to a complex 

Normalizing Flows - 1D Toy Example



Normalizing Flows - 1D Toy Example

Tractable base distribution



Normalizing Flows - 1D Toy Example
Probability of a data point x under transformed distribution

• The probability density will decrease in areas that are 
stretched by the function 

• since the area under the new distribution remains one

• The degree to which a function f[z, ϕ] stretches or 
compresses its input depends on the magnitude of its 
gradient

Magnitude of the 
derivative of the 
function



Normalizing Flows - 1D Toy Example

• The forward mapping (base density to model density) is called generative direction

• The inverse mapping (model density to base density ) is called normalizing direction  
• base density is the standard normal distribution

• To draw samples we need the forward mapping, 
• To measure the likelihood, we need to compute the inverse z = f −1 [x, ϕ]. 



Normalizing Flows - Training Objective

Find parameters ϕ that maximize the likelihood of the training data or equivalently minimize the negative log-
likelihood:



• 푃�(�) multivariate base density
• 푃�(�) multivariate model density

� =  �[�, ∅]

Deep Neural Network
� ∈  RD

� ∈  RD

• How to get a new sample ?
�∗ ~ 푃�(�)
�∗ =  �[�∗, ∅] � × � Jacobian Matrix

Forward  Mapping

Inverse Mapping / Normalizing Direction

Gradually move/flow data density towards normal distribution 푃�(�) 

Normalizing Flows - General Scenario
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Inverse Mapping / Normalizing Direction
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Normalizing Flows - General Scenario



• Dataset  {��} 
• Training Objective : Maximize the probabiliy of each data sample �� 

Negative log-likelihood

Normalizing Flows - General Scenario  (Training)



Linear Flows :      �[�] = � +  ��
Invertible Matrix

• expensive, not sufficiently expressive
• normal to normal mapping (input is normally 

distributed)
• difficult to map to arbitrary density using linear flows alone 

Elementwise/Nonlinear Flows : 
pointwise nonlinear function

• could be fixed nonlinearity (leaky ReLU)
• parametric one-to-one mapping

Normalizing Flows - Invertible Layers

jacobian is a diagonal

( since  dth input only affects dth output )



Coupling Flows :    

• Elementwise flows are nonlinear but don’t mix 
input dimensions, 

• Can’t capture correlations between variables. 

• Elementwise flows alternated with linear 
flows can be used to model more 
complex transformations 

Normalizing Flows - Invertible Layers

• To make a more general transformation, 
• the elements of h are randomly shuffled using permutation matrices between layers, 
• every variable is ultimately transformed by every other

e.g., images, the channels are divided and permuted between layers using 1×1 convolutions



    
Autoregressive flows are a 
generalization of coupling flows 
that treat each input dimension
as a separate “block

Normalizing Flows - Autoregressive Flows



Normalizing Flows - Residual Flows



Normalizing Flows - Multi-Scale Flows



Normalizing Flows - Glow

Affine coupling 
+
Multi-scale



Normalizing Flows - Glow



Normalizing Flows - Glow

actnorm layer 
• performs an affine transformation of the activations using a scale and 

bias parameter per channel, similar to batch normalization. 

• These parameters are initialized such that the post-actnorm activations 
per-channel have zero mean and unit variance given an initial 
minibatch of data. 

• This is a form of data dependent initialization 



Normalizing Flows - Glow

Invertible 1x1 convolution 
• Invertible 1 × 1 convolution, where the weight matrix is initialized as a 

random rotation matrix. 
• 1 × 1 convolution with equal number of input and output channels is a 

generalization of a permutation operation

The log-determinant of an invertible 1 × 1 convolution of a h × w × c 
tensor h with c × c weight matrix W is 
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Normalizing Flows - Glow



Normalizing Flows - Glow

Random Results



Normalizing Flows - Glow

Linear interpolation in latent space between real images



Normalizing Flows - Glow
Semantic Manipulation


