

COV877 Special Module on Visual Computing

Generative AI for Visual Content Creation: Image, Video, and 3D

Generative Adversarial Network (GAN)

Instructor: Dr. Lokender Tiwari

Research Scientist

Logistics

Lecture timing

- Wednesday 3:30 PM 5:00 PM
- Friday 5:00 PM 6:30 PM

Venue: LH 521

Courese webpage : https://lokender.github.io/teaching/COV877.html

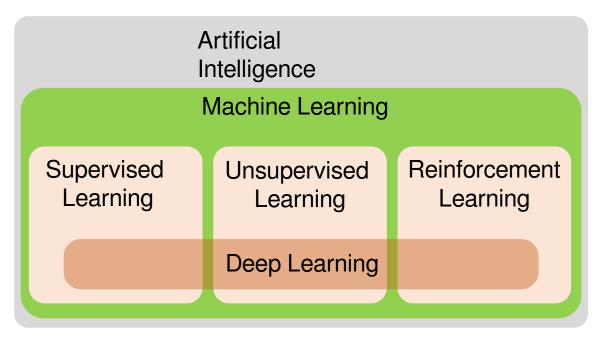
Reference Text Book (for first 2-3 lectures only)

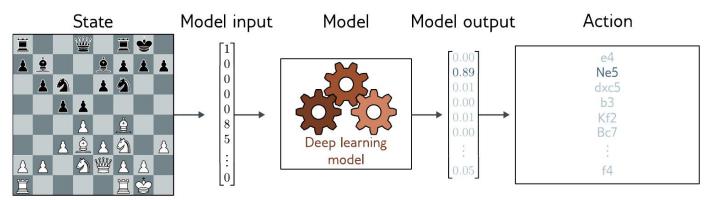
Understanding Deep Learning by Simon J.D Prince

https://udlbook.github.io/udlbook/

Taxonomy of Al

- AI : Everything that focus on simulating intelligent behavior
- ML : Learns to make decisions by fitting mathematical models to the observed data
 - Supervised Learning : *known inputs and output labels*
 - Unsupervised Learning : *output labels unknown*
 - Reinforcement Learning



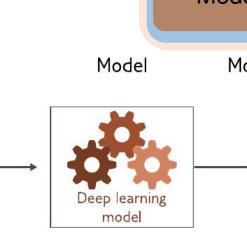


Learn mapping (policy) from states to actions

Taxonomy of Unsupervised Learning Unsupervised Learning Latent Variable Unsupervised Learning • Models Common approach is to find a mapping between data **x** and unseen *latent* Generative variable **z** Models compressed version of data **x** Probabilistic low dimensional than data Generative captures essential qualities of Models e.g. K-means algorithm, Model Model output Normal Latent Real world output map **x** to cluster $z \in \{1, 2, \ldots, K\}$ distribution variables 110 109

X dat laten Z a

-0.50.11.2-0.6



110

108

109

110

110

110

109 .

Define a distribution $Pr(\mathbf{z})$ over latent variable New samples can be generates

- 1. Draw from the *Pr*(**z**)
- 2. Map it to the data space **x**

(Generative Models)

- Generative Adversarial Network (GAN) : learn to generate data examples x from latent variables z
- Normalizing flows, Variational Autoencoders, and Diffusion models • (Probabilistic Generative Models) : In addition to generating new samples they also assign a probability $Pr(\mathbf{x}|\boldsymbol{\epsilon})$ to each data point \mathbf{x}

Properties of a good generative model

Desired Properties (Non-exhaustive)

- *Efficient sampling* : Sample generation should be computationally inexpensive
- *High-quality samples* : Indistinguishable from the real data with which the model was trained.
- *Coverage* : Generated samples should represent the entire training distribution
- Well-behaved latent space : All latent variables should corresponds to a plausible data samples. Smooth changes in z correspond to smooth changes in x.
- *Disentangled latent space* : Varying each dimension of z should correspond to changing an interpretable property of the data.
- *Efficient likelihood computation* : If the model is probabilistic, we would like to be able to calculate the probability of new examples efficiently and accurately.

Generative Models Covered in This Course

- Generative Adversarial Network (GAN)
- Normalizing Flows
- Variational Autoencoder (VAE)
- Diffusion

Matrix Calculus

- $y = f[\mathbf{x}]$ where $y \in R$ and $\mathbf{x} \in R^D$
 - derivative $\partial y/\partial x$ is a D-dimensional vector, where the ith element is computed as $\partial y/\partial x_i$
- y = f[x] where $y \in R^{Dy}$ and $x \in R^{Dx}$
 - derivative $\partial y/\partial x$ is a Dx × Dy matrix where element (i, j) contains the derivative $\partial y_i / \partial x_i$.
 - also known as a Jacobian and is sometimes written as $\nabla_x y$ in other documents.
- y = f[X] where $y \in R^{Dy}$ and $X \in R^{D1 \times D2}$
 - derivative $\partial y/\partial X$ is a 3D tensor containing the derivatives $\partial y_i / \partial x_{ik}$.

matrix and vector derivatives have similar forms

$$y = ax \quad \longrightarrow \quad \frac{\partial y}{\partial x} = a,$$

 $\mathbf{y} = \mathbf{A}\mathbf{x} \quad \longrightarrow \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}^T$

Norms

The ℓ_p norm of a vector **z** is calculated as

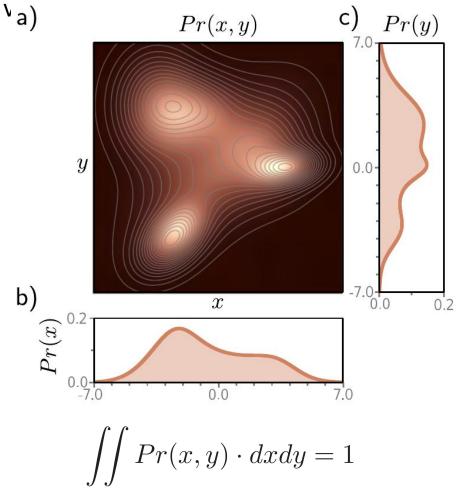
$$||\mathbf{z}||_p = \left(\sum_{d=1}^D |z_d|^p\right)^{1/p}$$

Similarly the ℓ_2 norm of a matrix **Z** (known as the Frobenius norm) is calculated as

$$||\mathbf{Z}||_F = \left(\sum_{i=1}^{I} \sum_{j=1}^{J} |z_{ij}|^2\right)^{1/2}$$

Joint Probability

The joint distribution Pr(x, y) tells us about the propensity that x and y take particular combinations of



Marginalization

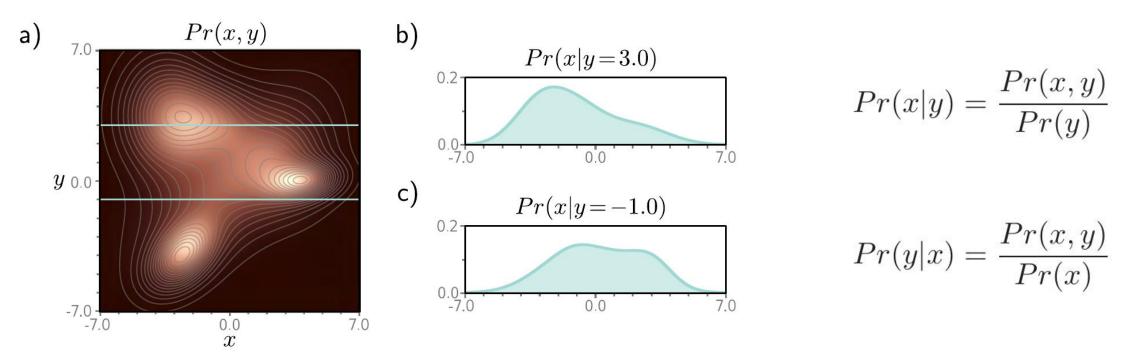
The marginal distributions Pr(x) and Pr(y) can be computed by integrating over the other variable

$$\int Pr(x,y) \cdot dx = Pr(y)$$
$$\int Pr(x,y) \cdot dy = Pr(x)$$

Interpretation : we are interested in computing the distribution of one variable regardless of the value the other can took

Conditional Probability

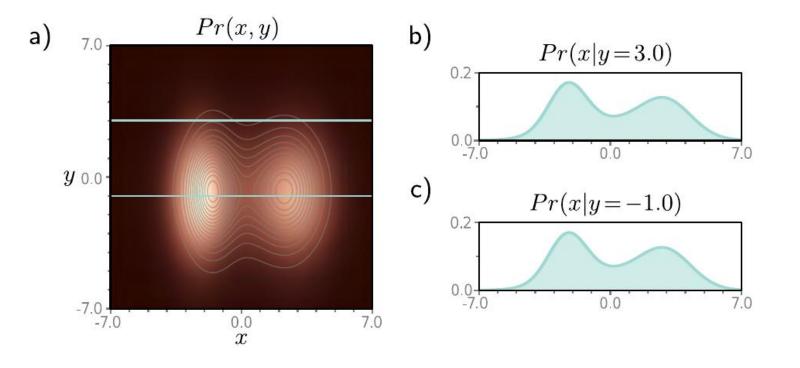
The conditional probability Pr(x|y) can be computed by taking a slice through the joint distribution Pr(x, y) for a fixed y



Pr(x, y) = Pr(x|y)Pr(y) = Pr(y|x)Pr(x)

Independence

- If two random variables x and y are independent,
 - the joint distribution factors into the product of marginal distributions, so Pr(x, y) = Pr(x) Pr(y).



Pr(x,y) = Pr(x|y)Pr(y) = Pr(x)Pr(y)

Univariate Normal Distrubution

$$Pr(x) = \operatorname{Norm}_{x}[\mu, \sigma^{2}] = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right]$$

mea variance

Standard Normal Distrubution

Distribution with mean is **zero** and the variance **one**

Standardization

The process of setting the mean of a random variable to zero and the variance to one

$$z = \frac{x - \mu}{\sigma}$$

Multivariate Normal Distrubution

Norm_{**x**}[
$$\boldsymbol{\mu}, \boldsymbol{\Sigma}$$
] = $\frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left[-\frac{(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu})}{2}\right]$
covariance

 $\mathbf{z} = \mathbf{\Sigma}^{-1/2}(\mathbf{x}-oldsymbol{\mu})$ (Standardization)

Sample from a **univariate** distribution

- 1. First compute the cumulative distribution F[x]
- 2. Draw a sample z* from a uniform distribution over the range [0, 1]
- 3. Evaluate above against the inverse of the cumulative distribution, the sample *x*^{*} is created as: $x^* = F^{-1}[z^*]$

Sample from **normal** distribution

A sample x from a normal distribution with mean μ and variance σ^2 can be obtained as

 $x = \mu + \sigma z$ is a standard variable with zero mean and unit variance

 $\mathbf{x} = \boldsymbol{\mu} + \boldsymbol{\Sigma}^{1/2} \mathbf{z}$ multivariate case

Ancestral Sampling

The process to generate a sample from the root variable(s) and then sample from the subsequent conditional distributions is known as ancestral sampling.

Consider a joint distribution Pr(x, y, z) over three variables, x, y, and z, which can be factored as :

Pr(x, y, z) = Pr(x) Pr(y|x) Pr(z|y)

To get a sample from this joint distribution,

- first draw a sample x^* from Pr(x)
- then draw a sample y^* from $Pr(y|x^*)$
- finally, draw a sample *z** from *Pr(z/y*)*

Distance between two probability distributions

KL Divergence

$$D_{KL}[p(x)||q(x)] = \int p(x) \log\left[\frac{p(x)}{q(x)}\right] dx$$

KL Divergence is not symmetric

 $D_{KL}[p(x)||q(x)] \neq D_{KL}[q(x)||p(x)]$

Jensen-Shannon Divergence

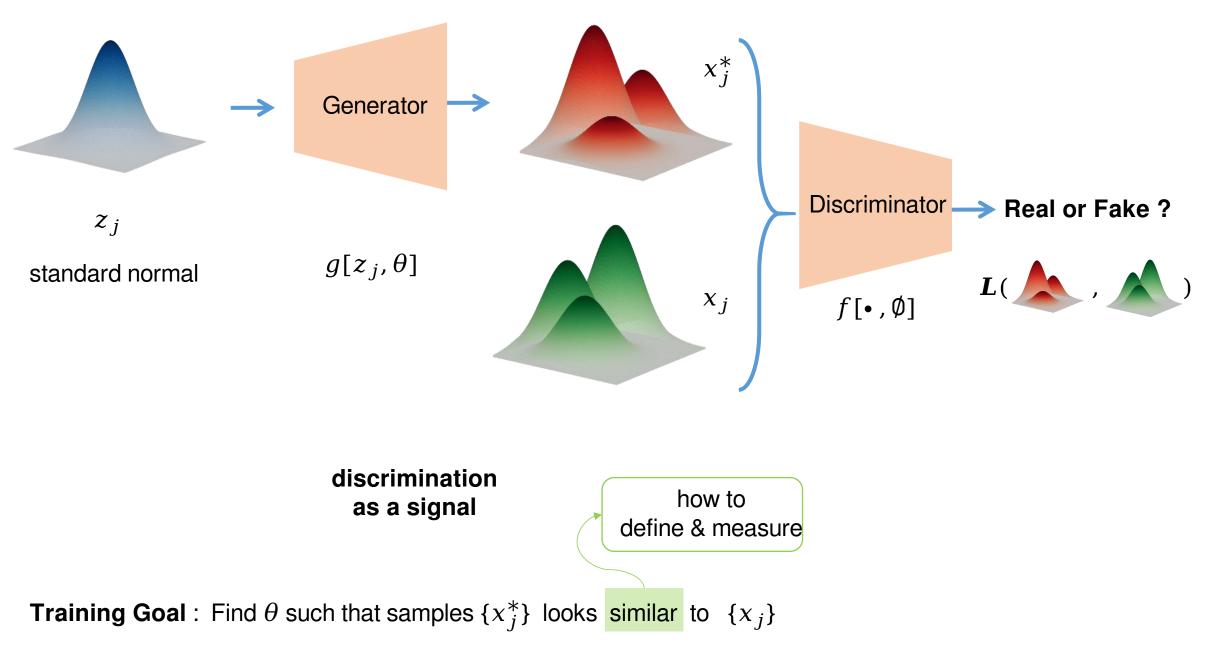
$$D_{JS}\left[p(x)\big|\big|q(x)\big] = \frac{1}{2}D_{KL}\left[p(x)\big|\big|\frac{p(x)+q(x)}{2}\right] + \frac{1}{2}D_{KL}\left[q(x)\big|\big|\frac{p(x)+q(x)}{2}\right]$$

Unsupervised model with an objective to generate new samples that are indistinguishable from training examples

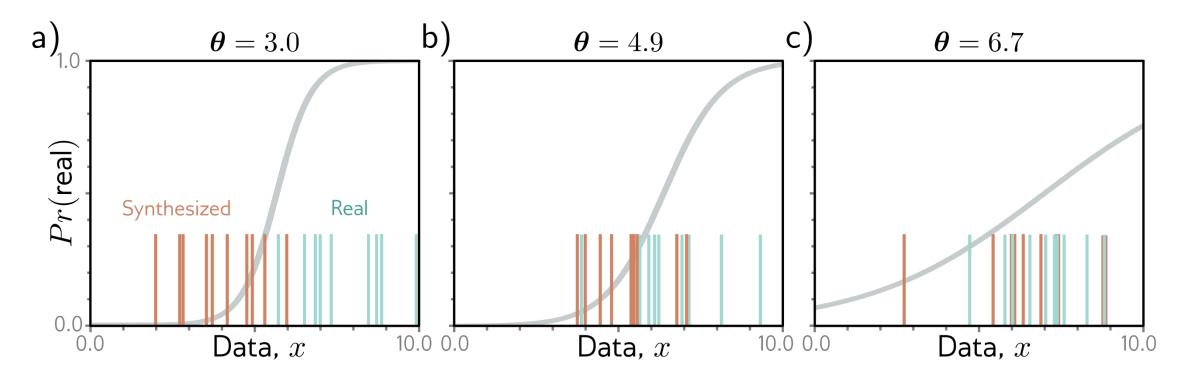
- GANs focus is to generate new samples only
- Doesm't build a probability distribution over the training data
 - cannot evaluate the probability that a new data point belongs to the same distribution

The GAN framework:

- *main generator network* : generates new samples by mapping **random noise** to the output data space
- *discriminator network* : distinguish between the generated samples and the real examples



Generative Adversarial Network (GAN) - 1D Toy Example



Training data $\{x_j\}$

A simple generator: $x_j^* = g[z_j, \theta] = z_j + \theta$ Increase θ move samples rightwards standard normal distribution

Discriminator : slope of the *sigmoid function* sigmoid become flatter

Generative Adversarial Network (GAN) - Loss functions

logistic signmoid function

Binary cross-entropy loss:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i} -(1-y_i) \log \left[1 - \operatorname{sig}[\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]] \right] - y_i \log \left[\operatorname{sig}[\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]] \right] \right]$$

y = 1 for real example, y = 0 for fake example

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{j} -\log \left[1 - \operatorname{sig}[f[\mathbf{x}_{j}^{*}, \boldsymbol{\phi}]] \right] - \sum_{i} \log \left[\operatorname{sig}[f[\mathbf{x}_{i}, \boldsymbol{\phi}]] \right] \right]$$

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \left[\min_{\boldsymbol{\phi}} \left[\sum_{j} -\log \left[1 - \operatorname{sig}[f[\mathbf{g}[\mathbf{z}_{j}, \boldsymbol{\theta}], \boldsymbol{\phi}]] \right] - \sum_{i} \log \left[\operatorname{sig}[f[\mathbf{x}_{i}, \boldsymbol{\phi}]] \right] \right] \right]$$

minmax game

Optimal solution : generated examples will be indistinguishable from real ones, discriminator will be at chance (0.5)

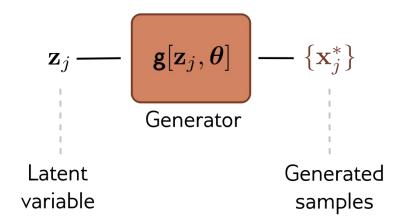
Generative Adversarial Network (GAN) - Loss functions

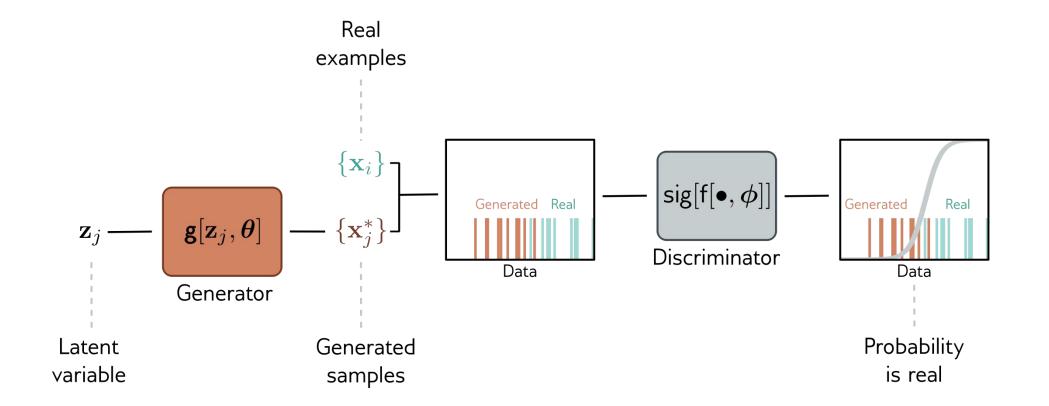
$$\hat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \left[\min_{\boldsymbol{\phi}} \left[\sum_{j} -\log \left[1 - \operatorname{sig}[f[\mathbf{g}[\mathbf{z}_{j}, \boldsymbol{\theta}], \boldsymbol{\phi}]] \right] - \sum_{i} \log \left[\operatorname{sig}[f[\mathbf{x}_{i}, \boldsymbol{\phi}]] \right] \right] \right]$$

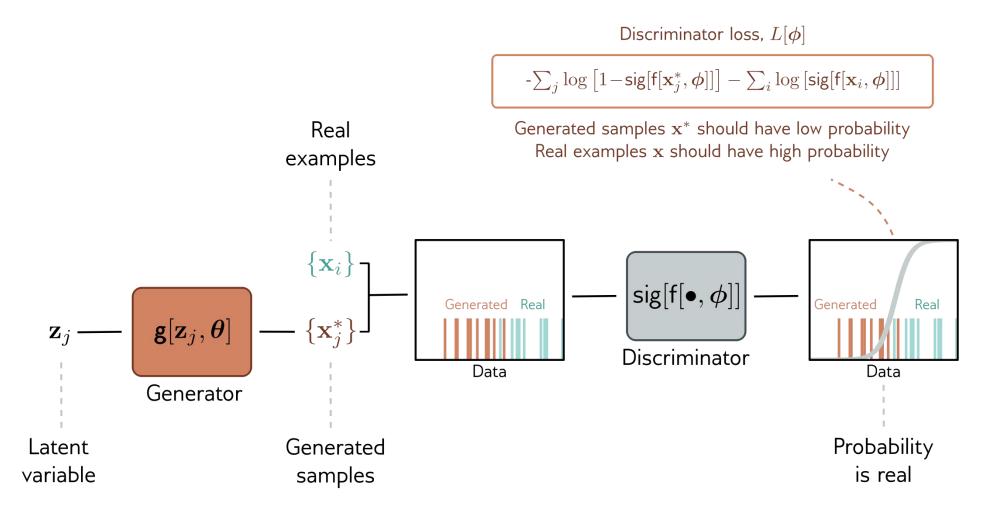
$$L[\boldsymbol{\phi}] = \sum_{j} -\log\left[1 - \operatorname{sig}[f[\mathbf{g}[\mathbf{z}_{j}, \boldsymbol{\theta}], \boldsymbol{\phi}]]\right] - \sum_{i} \log\left[\operatorname{sig}[f[\mathbf{x}_{i}, \boldsymbol{\phi}]]\right] \quad \text{Train discriminator}$$
$$L[\boldsymbol{\theta}] = \sum_{j} \log\left[1 - \operatorname{sig}[f[\mathbf{g}[\mathbf{z}_{j}, \boldsymbol{\theta}], \boldsymbol{\phi}]]\right], \quad \text{Train generator}$$

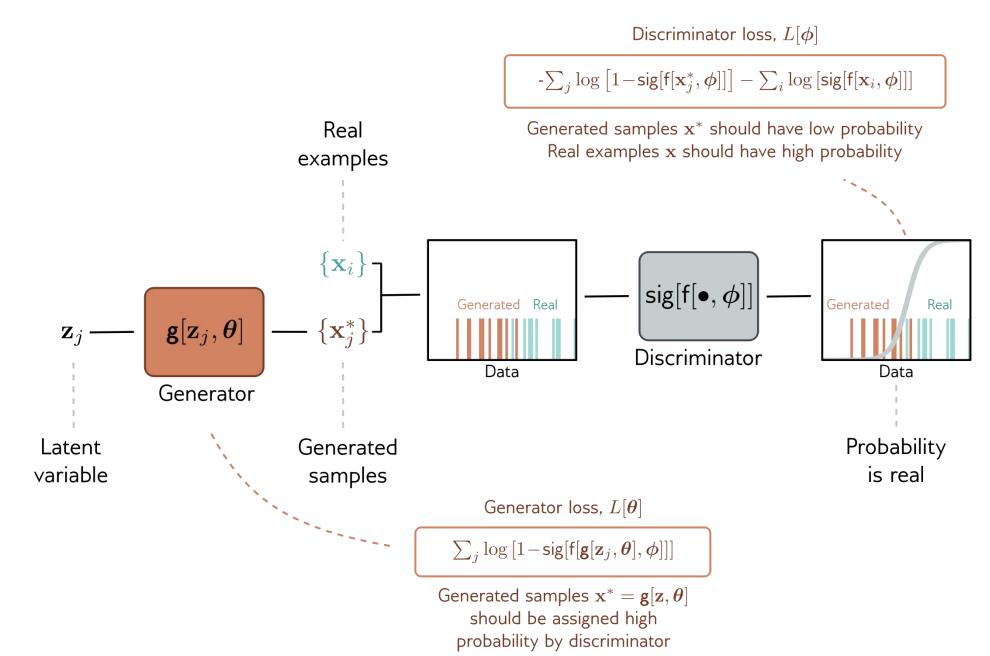
Overall training strategy

- draw a batch of latent variables z_j from the base distribution
- generator create samples $x_j = g[z_j, \theta]$
- choose a batch of real training examples .
- Given the two batches, we can now perform one or more gradient descent steps on each loss function

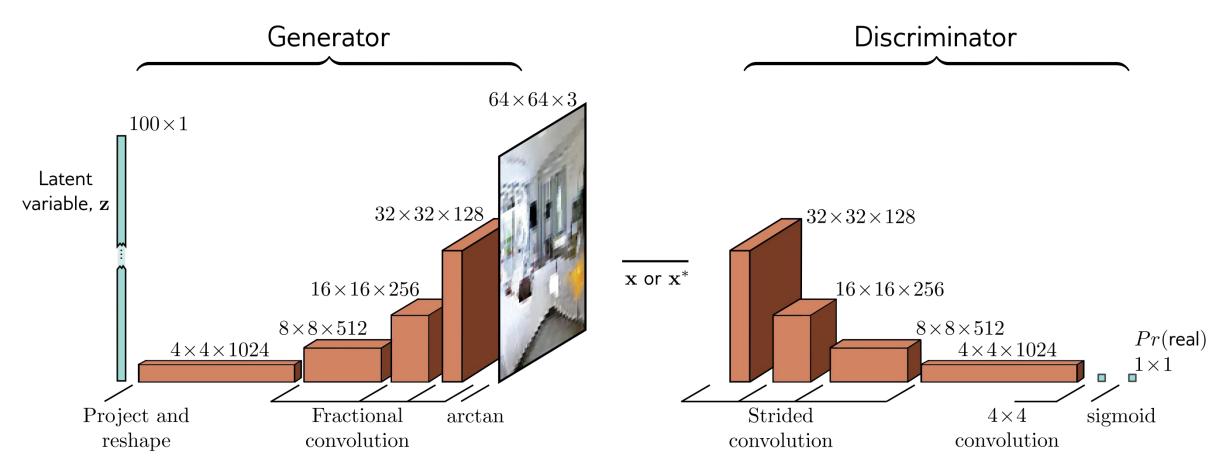








Deep convolutional GAN (DCGAN)



- Mode Dropping
- Mode Collapse
- Vanishing Gradient

- Mode Dropping
- Mode Collapse
- Vanishing Gradient

Generator is able to generate plausible samples, but only represent a subset of the data

For example for faces, it might never generate faces with beards

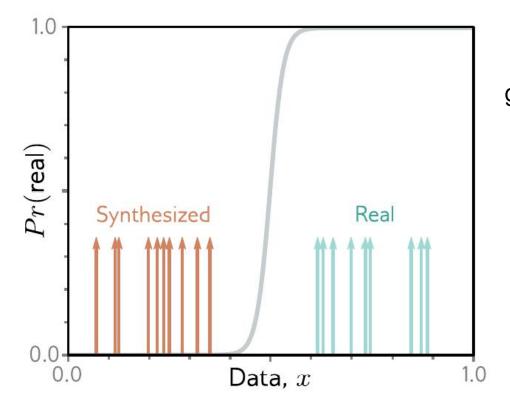
- Mode Dropping
- Mode Collapse
- Vanishing Gradient

Images are generated from a GAN trained on the LSUN scene understanding dataset using an MLP generator with a similar number of parameters and layers to the DCGAN

Generator entirely or mostly ignores the latent variables *z* and collapses all samples to one or a few points

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. PMLR, 2017.

- Mode Dropping
- Mode Collapse
- Vanishing Gradient

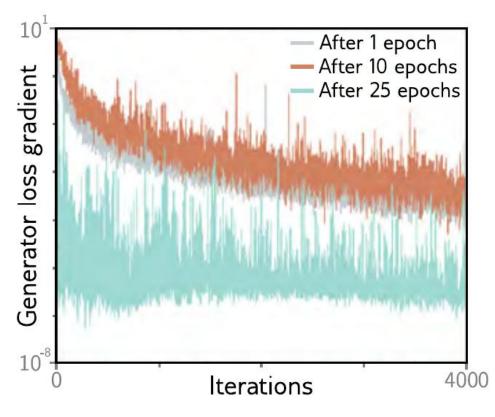


gradient to update the parameter of the generator may be tiny, when it is easy for discriminator to distinguish between real and generated examples,

the discriminator may have a very shallow slope **at the positions of the samples**;

Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. International Conference on Learning Representations.

- Mode Dropping
- Mode Collapse
- Vanishing Gradient



- The generator is frozen after 1, 10, and 25 epochs, and the discriminator is trained further
- The gradient of the generator decreases rapidly
- If the discriminator becomes too accurate, the gradients for the generator vanish.

Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. International Conference on Learning Representations.

Potential reason ?

$$L[\boldsymbol{\phi}] = -\frac{1}{J} \sum_{j=1}^{J} \left(\log \left[1 - \operatorname{sig}[\mathbf{f}[\mathbf{x}_{j}^{*}, \boldsymbol{\phi}]] \right] \right) - \frac{1}{I} \sum_{i=1}^{I} \left(\log \left[\operatorname{sig}[\mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]] \right] \right)$$
$$\approx -\mathbb{E}_{\mathbf{x}^{*}} \left[\log \left[1 - \operatorname{sig}[\mathbf{f}[\mathbf{x}^{*}, \boldsymbol{\phi}]] \right] \right] - \mathbb{E}_{\mathbf{x}} \left[\log \left[\operatorname{sig}[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]] \right] \right]$$
$$= -\int Pr(\mathbf{x}^{*}) \log \left[1 - \operatorname{sig}[\mathbf{f}[\mathbf{x}^{*}, \boldsymbol{\phi}]] \right] d\mathbf{x}^{*} - \int Pr(\mathbf{x}) \log \left[\operatorname{sig}[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]] \right] d\mathbf{x}$$

- does not depend on the generator
- happy to generate a subset of possible examples accurately.
- potential reason for mode dropping

Issue with the original loss formulation:

the gradient of the distance becomes zero when the generated samples are too easy to distinguish from the real examples

$$= -\int Pr(\mathbf{x}^*) \log \left[1 - \frac{Pr(\mathbf{x})}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}^* - \int Pr(\mathbf{x}) \log \left[\frac{Pr(\mathbf{x})}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}$$
$$= -\int Pr(\mathbf{x}^*) \log \left[\frac{Pr(\mathbf{x}^*)}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}^* - \int Pr(\mathbf{x}) \log \left[\frac{Pr(\mathbf{x})}{Pr(\mathbf{x}^*) + Pr(\mathbf{x})} \right] d\mathbf{x}.$$

KL Divergence

it penalizes regions with samples x^* but no real examples x (*Quality*) it penalizes regions with real examples but no samples (*Coverage*)

This is the Jensen-Shannon divergence between the synthesized distribution $Pr(x^*)$ and the true distribution Pr(x)

Wasserstein Formulation of GAN

• Original loss function

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{j} -\log \left[1 - \operatorname{sig}[\mathbf{f}[\mathbf{x}_{j}^{*}, \boldsymbol{\phi}]] \right] - \sum_{i} \log \left[\operatorname{sig}[\mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]] \right] \right]$$

Wasserstein GAN loss function

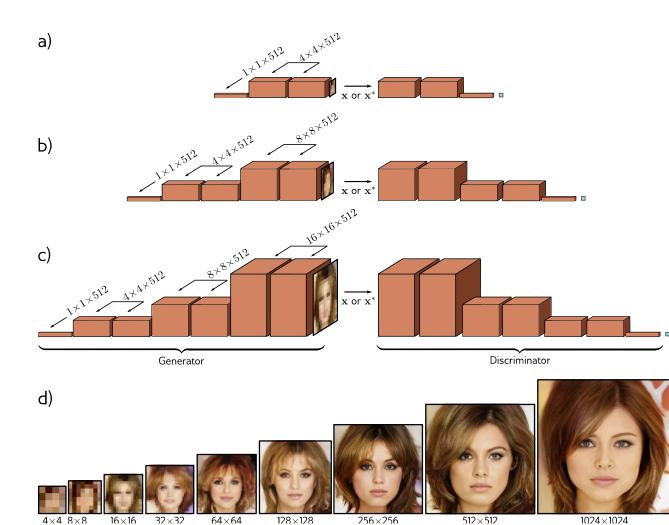
$$L[oldsymbol{\phi}] = \sum_j \mathrm{f}[\mathbf{x}_j^*, oldsymbol{\phi}] - \sum_i \mathrm{f}[\mathbf{x}_i, oldsymbol{\phi}]$$

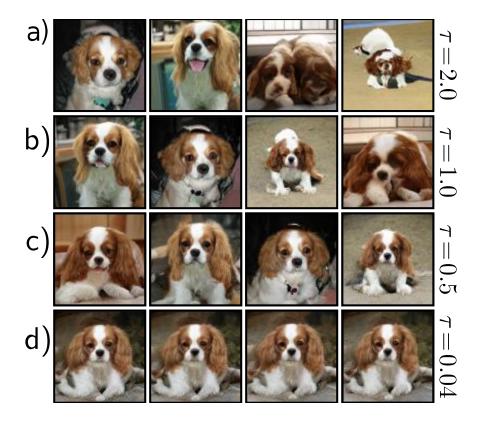
Subject to $\left|\frac{\partial f[\mathbf{x}, \phi]}{\partial \mathbf{x}}\right| < 1$ Constrain the discriminator to have an absolute gradient norm at every position *x*

How?

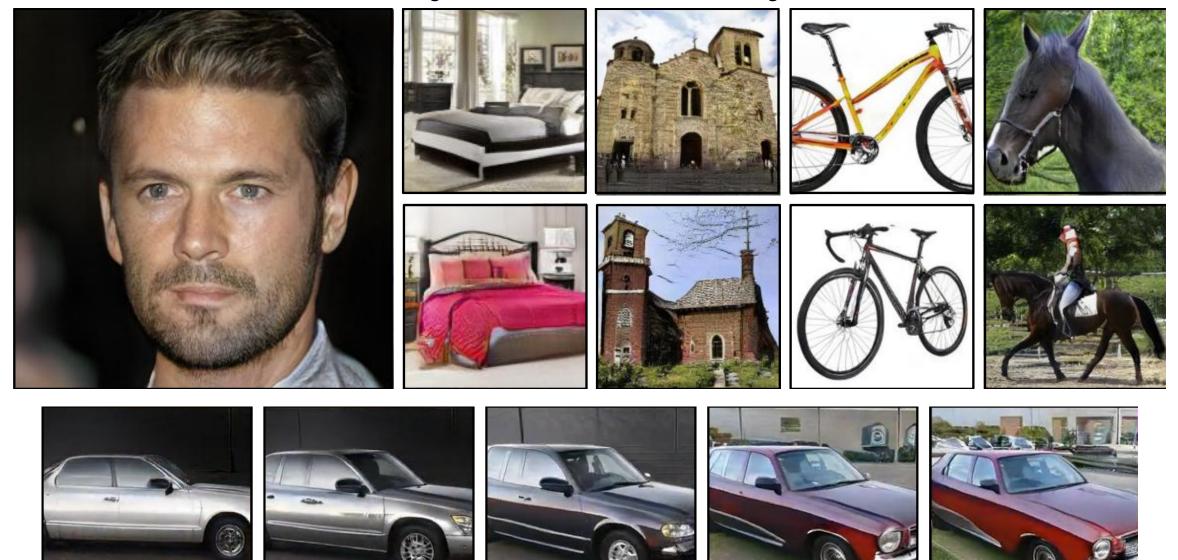
- Clip the discriminator weights to a small range (*e.g.*, ± 0.01)
- Use gradient penalty i.e., add a regularization term that increases as the gradient norm deviates from unity. (WGAN-GP)

- Wassertein formulation makes the training stable
- Other tricks that improve quality are progressive growing, minibatch discrimination, and truncation etc..

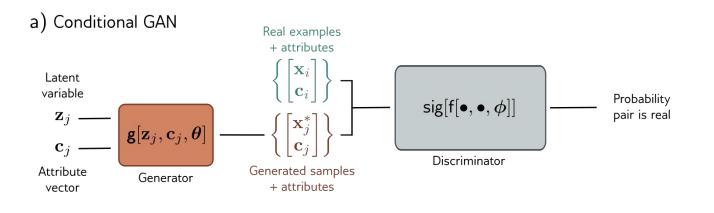




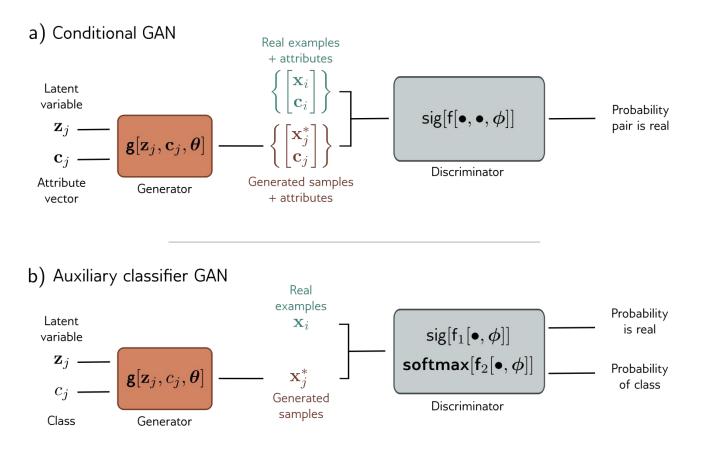
• Combination of all tricks allow GAN's to generate varied and realistic images



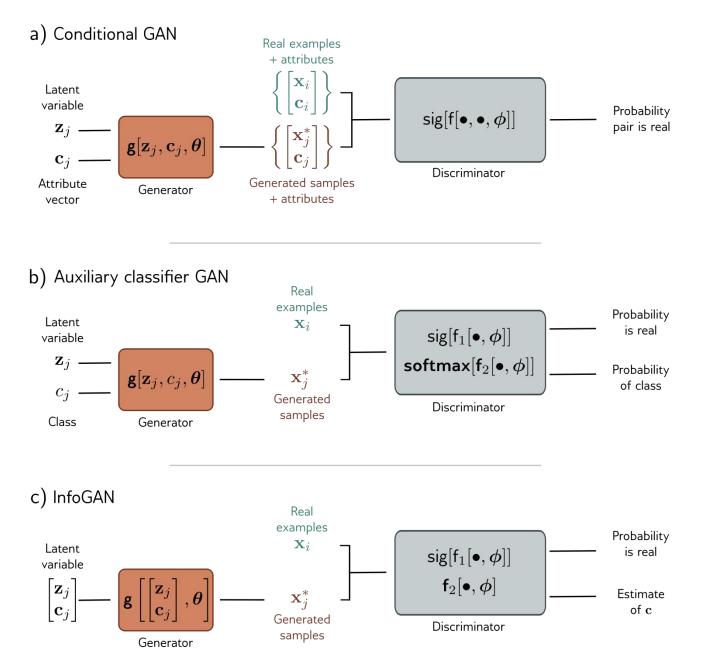
Conditional GAN



Conditional GAN



Conditional GAN



ACGAN Results

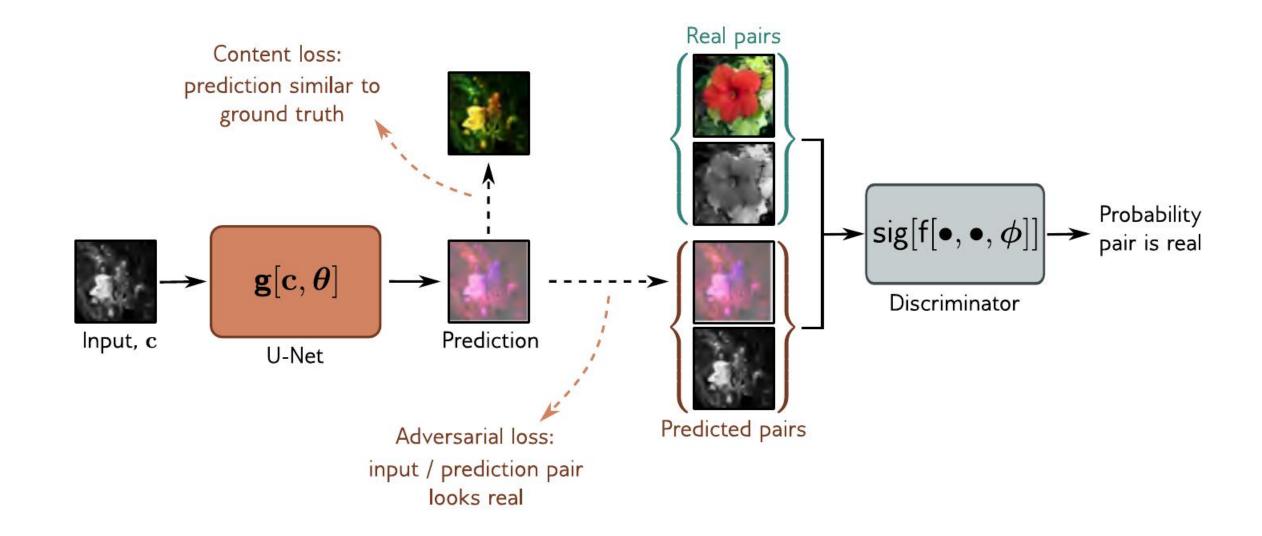
Condition : Class label

Image Translation

GANs used in image translation tasks like

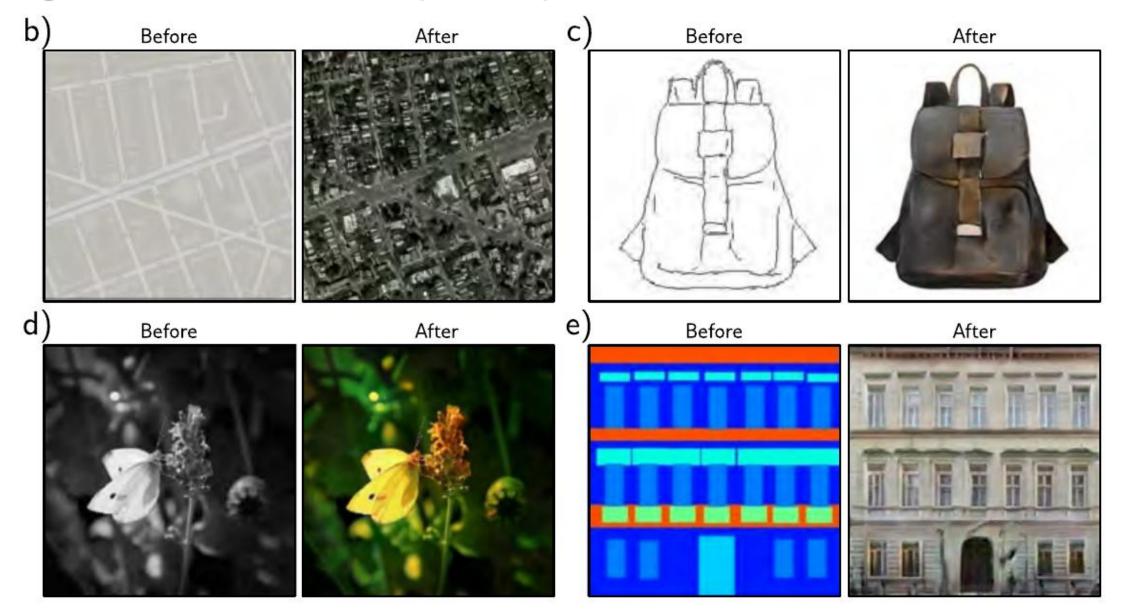
- Pix2Pix
- CycleGAN
- StyleGAN

Image Translation - Pix2Pix



Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. Image-to-image translation with conditional adversarial networks, CVPR 2017

Image Translation - Pix2Pix (Results)



Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. Image-to-image translation with condi tional adversarial networks, CVPR 2017

Image Translation - CycleGAN

- What if we do not have the labeled before/after images for adversarial loss.
- The CycleGAN addresses the situation where two sets of data with distinct styles are available but no matching pairs



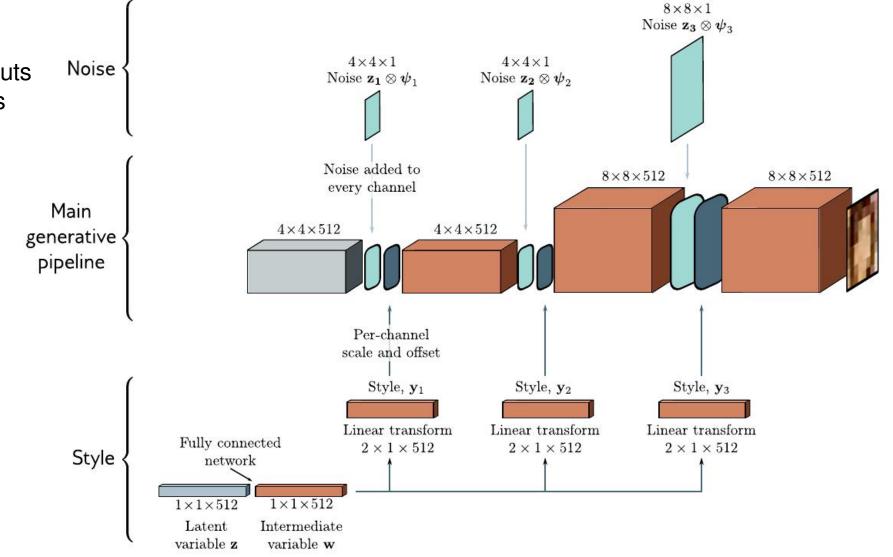
Zhu, J.-Y et.al., Unpaired image-to-image translation using cycle-consistent adversarial networks, ICCV 2017

Image Translation - CycleGAN (Results)

Zhu, J.-Y et.al., Unpaired image-to-image translation using cycle-consistent adversarial networks, ICCV 2017

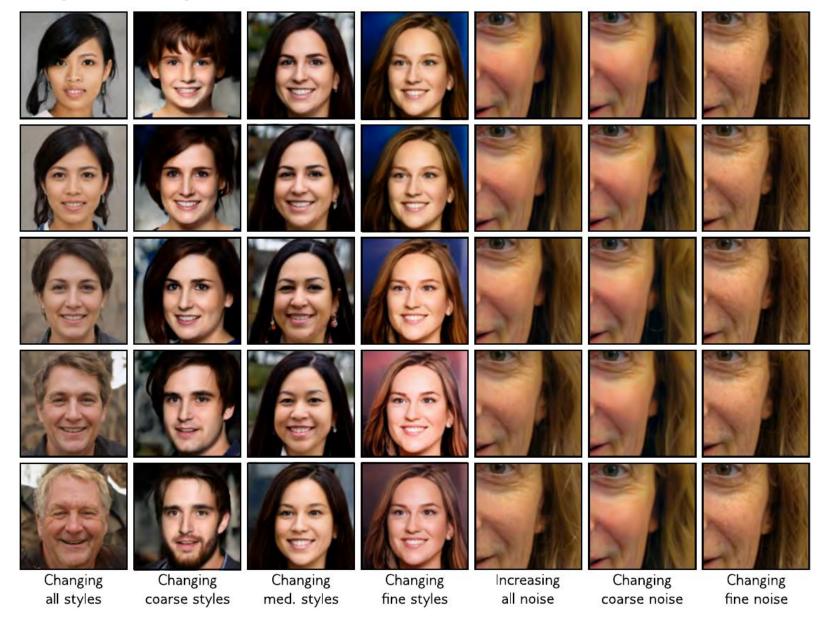
Image Translation - StyleGAN

- StyleGAN controls the output image at different scales and separates style from noise
- latent variable injected to the inputs No of the generator at various points
- to modify the current representation at these points in different ways.



Karras, T., Laine, S., & Aila, T. (2019). A style based generator architecture for generative adversarial networks, CVPR 2019

Image Translation - StyleGAN (Results)



Karras, T., Laine, S., & Aila, T. (2019). A style based generator architecture for generative adversarial networks, CVPR 2019