

16TH EUROPEAN CONFERENCE ON COMPUTER VISION

WWW.ECCV2020.EU

Pseudo RGB-D for Self-Improving Monocular SLAM and Depth Prediction

Lokender Tiwari

Pan Ji

Quoc-Huy

Tran

Bingbing Zhuang

Saket Anand

Manmohan Chandraker

Presenter: Lokender Tiwari, Ph.D. Candidate at IIIT-Delhi Project Page: https://lokender.github.io/self-improving-SLAM.html

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

NEC LABORATORIES AMERICA, INC. Relentless passion for innovation

Outline

- Motivation
- Proposed Self-Improving Framework
- Experiments
- Analysis of Self-Improving Framework
- Conclusion

Motivation - Self-Improving Pseudo RGB-D SLAM

Geometric Monocular **RGB** SLAM

Geometric Monocular **RGB-D** SLAM

RGB ORB-SLAM2 [1] (KITTI Odometry Sequence 01)

RGB-D ORB-SLAM2 [1] (KITTI Odometry Sequence 01)

Motivation - Self-Improving Pseudo RGB-D SLAM

Geometric Monocular **RGB** SLAM

RGB ORB-SLAM2 [1] (KITTI Odometry Sequence 01) **RGB-D** ORB-SLAM2 [1] (KITTI Odometry Sequence 01)

[1] Mur-Artal wt al."ORBSLAM2: An open-source slam system for monocular, stereo, and rgb-d cameras." IEEE Transactions on Robotics 2017

Motivation - Self-Improving Pseudo RGB-D SLAM

RGB ORB-SLAM2 [1] (KITTI Odometry Sequence 01) **RGB-D** ORB-SLAM2 [1] (KITTI Odometry Sequence 01)

[1] Mur-Artal wt al."ORBSLAM2: An open-source slam system for monocular, stereo, and rgb-d cameras." IEEE Transactions on Robotics 2017

Motivation - Self-Improving Monocular Depth Prediction

Unsupervised CNN-Based Monocular Depth Prediction

Does not model:

- Photo changes
- Wide-baseline constraints (beyond 3-5 frames)
-

Motivation - Self-Improving Monocular Depth Prediction

Unsupervised CNN-Based Monocular Depth Prediction

Does not model:

- Photo changes
- Wide-baseline constraints (beyond 3-5 frames)

• ...

RGB

• Fails to predict accurate depths (especially for farther points)

Motivation

Geometric Monocular RGB-SLAM Unsupervised CNN-Based Monocular Depth Prediction

Motivation

Geometric Monocular RGB-SLAM

Suffers from:

- Pure Rotational Motion
- Scale ambiguity/drift
- ...

Unsupervised CNN-Based Monocular Depth Prediction

Does not model:

- Photo changes
- Wide-baseline constraints (beyond 3-5 frames)

•

Motivation

Geometric Monocular RGB-SLAM

Suffers from:

- Pure Rotational Motion
- Scale ambiguity/drift
- ...

Unsupervised CNN-Based Monocular Depth Prediction

Does not model:

- Photo changes
- Wide-baseline constraints (beyond 3-5 frames)

geometric-CNN framework

We propose a Self-Supervised, Self-Improving framework.

MonoDepth2-M [1] Monocular Depth Estimation Network

• Base Unsupervised Monocular Depth Network: MonoDepth2-M [1]

[1] Godard, Clément, et al. "Digging into self-supervised monocular depth estimation." in ICCV 2019

• Base Unsupervised Monocular Depth Network: **MonoDepth2-M** [1]

[1] Godard, Clément, et al. "Digging into self-supervised monocular depth estimation." in ICCV 2019

- Base Unsupervised Monocular Depth Network: MonoDepth2-M [1]
- Train MonoDepth2-M using monocular videos in a complete unsupervised manner.

• Prepare Pseudo RGB-D data

- Prepare **Pseudo RGB-D** data
- Run RGB-D SLAM on Pseudo RGB-D pairs. We use RGB-D version of ORB-SLAM2 [2] as base RGB-D SLAM

- Prepare Pseudo RGB-D data
- Run RGB-D SLAM on **Pseudo RGB-D** pairs. We use RGB-D version of **ORB-SLAM2** [2] as base RGB-D SLAM
- Save Pseudo RGB-D SLAM outputs (Camera poses, keyframes, tracked keypoints and their depth values)

• Depth Refinement

- Depth Refinement
 - Disable MonoDepth2 pose network
 - Use camera poses obtained from Pseudo RGB-D SLAM

[1] Godard, Clément, et al. "Digging into self-supervised monocular depth estimation." *in ICCV 2019*

[2] Mur-Artal wt al."ORBSLAM2: An open-source slam system for monocular, stereo, and rgb-d cameras." IEEE Transactions on Robotics 2017

- Depth Refinement
 - Disable MonoDepth2 pose network
 - Use camera poses obtained from Pseudo RGB-D SLAM

[1] Godard, Clément, et al. "Digging into self-supervised monocular depth estimation." in ICCV 2019

[2] Mur-Artal wt al."ORBSLAM2: An open-source slam system for monocular, stereo, and rgb-d cameras." IEEE Transactions on Robotics 2017

• Pose Refinement

- Use the refined depth model to prepare Pseudo RGB-D data
- Re-run Pseudo RGBD-D SLAM and get refined camera poses, keypoints amd their updated locations

• Self-Improving Loop

• Run until we see no improvement in depth and/or pose

Pose Refinement

- Cannot use Pseudo RGB-D data directly to run RGB-D SLAM
- Pseudo Depth Sensor
 - CNN predict depth values at different scales compared to real active sensors e.g LiDAR

Pose Refinement

- Cannot use Pseudo RGB-D data directly to run RGB-D SLAM
- Pseudo Depth Sensor
 - CNN predict depth values at different scales compared to real active sensors e.g LiDAR
- Adaptive Baseline (b)
 - Mimic the setup of KITTI dataset [1]

$$b = \frac{b^{KITTI}}{d^{KITTI}} * d_{max}$$

$$b^{KITTI} = 0.54 \text{ meters}$$

$$d^{KITTI} = 80 \text{ meters}$$

$$d_{max}$$

$$d_{max}$$

$$d_{max} = 0.54 \text{ meters}$$

$$Max \text{ CNN-predicted depth}$$
of the input sequence

Depth Refinement

- **Pre-training:** Use MonoDepth2's pose network (*Once*).
- **Depth Refinement:** Use Pseudo RGB-D SLAM's output poses.

Pre-training Configuration

Depth Refinement

- **Pre-training:** Use MonoDepth2's pose network (*Once*).
- **Depth Refinement:** Use Pseudo RGB-D SLAM's output poses.

Refinement Configuration

Depth Refinement

- **Pre-training:** Use MonoDepth2's pose network (*Once*).
- **Depth Refinement:** Use Pseudo RGB-D SLAM's output poses.
- True Camera Intrinsics
 - Instead of average camera intrinsics , we use true camera intrinsics during refinement.

Refinement Configuration

Depth Refinement

 $\mathcal{X} = \{ \mathbf{p}^{i} \}$ Set of keypoints visible in all the three **keyframes**

 $d^{\imath}_{c}(\mathbf{w})$ Depth of ith keypoint in the **keyframe** \mathcal{I}_{c} obtained from the **depth network**

$$k1 < c < k2$$

 $\mathbf{p}_{c}^{i} = [p_{c}^{i1}, p_{c}^{i2}]$

 $\mathcal{X} = \{\mathbf{p}^{\imath}\}$ Set of keypoints visible in all the three **keyframes**

 $d^{\imath}_{c}(\mathbf{w})$ Depth of ith keypoint in the **keyframe** \mathcal{I}_{c} obtained from the **depth network**

 \mathcal{I}_{c-1} \mathcal{I}_{c+1} Temporally adjacent **frames** of the central **keyframe** \mathcal{I}_c

 $\begin{array}{ll} \mathbf{T}_{c \to c-1} & \mathbf{T}_{c \to c+1} & \text{Relative camera poses between } \mathcal{I}_c \text{ and its temporally adjacent frames, obtained from Pseudo RGB-D SLAM} \end{array}$

Depth Refinement

$$k1 < c < k2$$

 $\mathbf{p}_{c}^{i} = [p_{c}^{i1}, p_{c}^{i2}]$

$$\begin{bmatrix} \bullet & \mathbf{p}_{k1}^{i} \\ \mathcal{I}_{k1} \end{bmatrix} \begin{bmatrix} \bullet & \mathbf{p}_{c}^{i} \\ \mathcal{I}_{c} \end{bmatrix} \mathbf{p}_{c}^{i} \mathbf{p}_{c}^{i} \mathbf{p}_{k2}^{i}$$

 \mathcal{I}_{c-1} \mathcal{I}_{c+1} Temporally adjacent frames of central keyframe \mathcal{I}_c \mathcal{I}_{c-1}' \mathcal{I}_{c+1}' Synthesized temporally adjacent frames

 $\mathcal{P}_{c} = \operatorname{PE}(\mathcal{I}_{c-1}', \mathcal{I}_{c-1}) + \operatorname{PE}(\mathcal{I}_{c+1}', \mathcal{I}_{c+1})$ Photometric error

\mathcal{S}_c Smoothness loss

Narrow baseline losses

Depth Refinement

k1 < c < k2 $\mathbf{p}_{c}^{i} = [p_{c}^{i1}, p_{c}^{i2}]$

 $d^{\imath}_{c}(\mathbf{w})$ Depth of ith keypoint in the **keyframe** \mathcal{I}_{c} obtained from the **depth network**

$$\begin{split} \mathbf{X}_{c}^{i} &= \mathbf{K}^{-1}[\mathbf{p}_{c}^{i}, \ 1 \]^{T} d_{c}^{i}(\mathbf{w}) \quad \text{Backproject to 3D} \\ \mathbf{X}_{c \to k1}^{i} &= \mathbf{T}_{c \to k1} \mathbf{X}_{c}^{i} = [x_{c \to k1}^{i}(\mathbf{w}), \ y_{c \to k1}^{i}(\mathbf{w}), \ d_{c \to k1}^{i}(\mathbf{w})] \quad \text{Depth transfer} \end{split}$$

 $\mathbf{T}_{c
ightarrow k1}$ Relative camera pose obtained from Pseudo RGB-D SLAM

Depth Refinement

$$\begin{split} \mathbf{X}_{c \to k1}^{i} = \mathbf{T}_{c \to k1} \, \mathbf{X}_{c}^{i} &= [x_{c \to k1}^{i}(\mathbf{w}), \ y_{c \to k1}^{i}(\mathbf{w}), \ d_{c \to k1}^{i}(\mathbf{w})] \quad \text{Depth transfer} \\ &|d_{c \to k1}^{i}(\mathbf{w}) - d_{k1}^{i}(\mathbf{w})| \end{split}$$

Depth Transfer loss

Depth Refinement

$$\begin{split} \mathbf{X}_{c \to k1}^{i} &= \mathbf{T}_{c \to k1} \, \mathbf{X}_{c}^{i} = [x_{c \to k1}^{i}(\mathbf{w}), \, y_{c \to k1}^{i}(\mathbf{w}), \, d_{c \to k1}^{i}(\mathbf{w})] & \text{Depth transfer} \\ & |d_{c \to k1}^{i}(\mathbf{w}) - d_{k1}^{i}(\mathbf{w})| + |d_{k1 \to c}^{i}(\mathbf{w}) - d_{c}^{i}(\mathbf{w})| \\ & \text{Depth Transfer loss} & \text{Depth Transfer loss} \end{split}$$

Depth Refinement

 $\mathbf{X}_{c \to k1}^{i} = \mathbf{T}_{c \to k1} \, \mathbf{X}_{c}^{i} = [x_{c \to k1}^{i}(\mathbf{w}), \, y_{c \to k1}^{i}(\mathbf{w}), \, d_{c \to k1}^{i}(\mathbf{w})] \quad \text{Depth transfer}$

 $\mathcal{T}_{c \leftrightarrow k1}^{i}(\mathbf{w}) = |d_{c \rightarrow k1}^{i}(\mathbf{w}) - d_{k1}^{i}(\mathbf{w})| + |d_{k1 \rightarrow c}^{i}(\mathbf{w}) - d_{c}^{i}(\mathbf{w})|$

Symmetric DepthDepth Transfer lossDepth Transfer lossTransfer loss

Depth Refinement

$$\mathbf{X}_{c \to k1}^{i} = \mathbf{T}_{c \to k1} \, \mathbf{X}_{c}^{i} = [x_{c \to k1}^{i}(\mathbf{w}), \, y_{c \to k1}^{i}(\mathbf{w}), \, d_{c \to k1}^{i}(\mathbf{w})] \quad \text{Depth transfer}$$

$$\mathcal{T}_{c \leftrightarrow k1}^{i}(\mathbf{w}) = |d_{c \rightarrow k1}^{i}(\mathbf{w}) - d_{k1}^{i}(\mathbf{w})| + |d_{k1 \rightarrow c}^{i}(\mathbf{w}) - d_{c}^{i}(\mathbf{w})|$$

Symmetric Depth Depth Transfer loss Depth Transfer loss

Similarly compute $\mathcal{T}_{c\leftrightarrow k2}^{i}$ $\mathcal{T}_{k1\leftrightarrow k2}^{i}$

Depth Refinement

$$\mathbf{X}_{c \to k1}^{i} = \mathbf{T}_{c \to k1} \, \mathbf{X}_{c}^{i} = [x_{c \to k1}^{i}(\mathbf{w}), \, y_{c \to k1}^{i}(\mathbf{w}), \, d_{c \to k1}^{i}(\mathbf{w})] \quad \text{Depth transfer}$$

$$\mathcal{T}_{c \leftrightarrow k1}^{i}(\mathbf{w}) = |d_{c \rightarrow k1}^{i}(\mathbf{w}) - d_{k1}^{i}(\mathbf{w})| + |d_{k1 \rightarrow c}^{i}(\mathbf{w}) - d_{c}^{i}(\mathbf{w})|$$

Symmetric Depth Depth Transfer loss Depth Transfer loss

Similarly compute $\mathcal{T}_{c\leftrightarrow k2}^{i}$ $\mathcal{T}_{k1\leftrightarrow k2}^{i}$

Wide baseline losses

Depth Refinement

 $d_c^i(\mathbf{w})$ Depth of ith keypoint in the **keyframe** \mathcal{I}_c obtained from the **depth network** $d_c^i(\mathbf{SLAM})$ Depth of ith keypoint in the keyframe \mathcal{I}_c obtained from Pseudo RGB-D SLAM

$$\mathcal{D}_{c} = \frac{\sum_{i \in \mathcal{X}} |d_{c}^{i}(\mathbf{w}) - d_{c}^{i}(\mathbf{SLAM})|}{|\mathcal{X}|} \qquad \text{Depth Consistency Loss}$$

 $\mathcal{L} = \alpha \mathcal{P}_c + \beta \mathcal{S}_c + \gamma \mathcal{D}_c + \mu \left(\ \mathcal{T}_{c \leftrightarrow k1}^i + \mathcal{T}_{c \leftrightarrow k2}^i + \mathcal{T}_{k1 \leftrightarrow k2}^i \ \right) \quad \text{Total Loss}$

Experiments - Depth Refinement Evaluation Quantitative Results

- Standard KITTI Eigen's train-test split
- M : Monocular tranining
- S : Stereo training
- MS : Monocular and stereo training

			Lower is better			Higher is better			
	Method	Train	Abs Rel	Sq Rel	RMSE	RMSE log	al	a2	a3
ervised	Yang[55]		0.182	1.481	6.501	0.267	0.725	0.906	0.963
	Mahjourian[29]	Μ	0.163	1.240	6.220	0.250	0.762	0.916	0.968
	Klodt[22]	Μ	0.166	1.490	5.998	-	0.778	0.919	0.966
	DDVO[44]		0.151	1.257	5.583	0.228	0.810	0.936	0.974
	GeoNet[57]		0.149	1.060	5.567	0.226	0.796	0.935	0.975
	DF-Net[64]		0.150	1.124	5.507	0.223	0.806	0.933	0.973
	Ranjan[35]		0.148	1.149	5.464	0.226	0.815	0.935	0.973
	EPC++[28]		0.141	1.029	5.350	0.216	0.816	0.941	0.976
	Struct2depth(M)[4]	Μ	0.141	1.026	5.291	0.215	0.816	0.945	0.979
	WBAF [59]	Μ	0.135	0.992	5.288	0.211	0.831	0.942	0.976
	MonoDepth2-M (re-train) [15]	Μ	0.117	0.941	4.889	0.194	0.873	0.957	0.980
In	MonoDepth2-M (original) [15]	Μ	0.115	0.903	4.863	0.193	0.877	0.959	0.981
f.s.	pRGBD-Refined	Μ	0.113	0.793	4.655	0.188	0.874	0.960	0.983
sel	Garg[13]	S	0.152	1.226	5.849	0.246	0.784	0.921	0.967
	3Net (R50)[34]	S	0.129	0.996	5.281	0.223	0.831	0.939	0.974
	Monodepth2-S[15]	S	0.109	0.873	4.960	0.209	0.864	0.948	0.975
	SuperDepth [33]	S	0.112	0.875	4.958	0.207	0.852	0.947	0.977
	monoResMatch [43]	S	0.111	0.867	4.714	0.199	0.864	0.954	0.979
	DepthHints [49]	S	0.106	0.780	4.695	0.193	0.875	0.958	0.980
	DVSO[53]	S	0.097	0.734	4.442	0.187	0.888	0.958	0.980
	UnDeepVO [24]	MS	0.183	1.730	6.570	0.268	-	-	-
	EPC++ [28]	MS	0.128	0.935	5.011	0.209	0.831	0.945	0.979
	Monodepth2-MS[15]	MS	0.106	0.818	4.750	0.196	0.874	0.957	0.979
	Eigen[8]	D	0.203	1.548	6.307	0.282	0.702	0.890	0.890
	Liu[26]	D	0.201	1.584	6.471	0.273	0.680	0.898	0.967
	Kuznietsov[23]	DS	0.113	0.741	4.621	0.189	0.862	0.960	0.986
	SVSM FT[28]	DS	0.094	0.626	4.252	0.177	0.891	0.965	0.984
	[Guo[19]	DS	0.096	0.641	4.095	0.168	0.892	0.967	0.986
	DORN[12]	D	0.072	0.307	2.727	0.120	0.932	0.984	0.994

Experiments - Depth Refinement Evaluation

RGB

MonoDepth2 [1]-Stereo Supervision

pRGBD-Refined (Proposed Method)

[1] Godard, Clément, et al. "Digging into self-supervised monocular depth estimation." in ICCV 2019

Experiments - Depth Refinement Evaluation Qualitative Results

RGB

MonoDepth2[1]-Monocular Supervision

pRGBD-Refined (Proposed Method)

• Visual improvements in the depth of farther points.

Experiments - Pose Refinement Evaluation Quantitative Results

- KITTI Odometry Dataset
- Training Sequences: 00 08
- Testing Sequences: 09 and 10
- pRGBD-Initial: Pseudo RGB-D SLAM using pretrained CNN depths i.e Oth self-improving loop.

		1	Seq. 09)	Seq. 10		
	Method	RMSE	RelTr	RelRot	RMSE	RelTr	RelRot
Supervised	DeepVO[47]	-	-	-	-	8.11	0.088
	ESP-VO[48]	-		-	-	9.77	0.102
	GFS-VO[50]	-	-	-	-	6.32	0.023
	GFS-VO-RNN[50]	-	-	-	-	$\overline{7.44}$	$\overline{0.032}$
	BeyondTracking[51]	-	-	-	-	3.94	0.017
	DeepV2D[42]	79.06	8.71	0.037	48.49	12.81	0.083
Self-Supervised	SfMLearner [60]	24.31	8.28	0.031	20.87	12.20	0.030
	GeoNet[57]	158.45	28.72	0.098	43.04	23.90	0.090
	Depth-VO[58]	-	11.93	0.039	-	12.45	0.035
	vid2depth[29]	-	-	-	-	21.54	0.125
	UnDeepVO[24]	-	7.01	0.036	-	10.63	0.046
	Wang et al. [45]	-	9.88	0.034	-	12.24	0.052
	CC[35]	29.00	6.92	0.018	13.77	7.97	0.031
	DeepMatchVO[37]	27.08	9.91	0.038	24.44	12.18	0.059
	Li $et al.[25]$	-	8.10	0.028	-	12.90	0.032
	Monodepth2-M[15]	55.47	11.47	0.032	20.46	7.73	0.034
	SC-SfMLearer[2]	-	11.2	0.034	-	10.1	0.050
	RGB ORB-SLAM	18.34	7.42	0.004	8.90	5.85	0.004
	pRGBD-Initial	12.21	4.26	0.011	8.30	5.55	0.017
	pRGBD-Refined	11.97	4.20	0.010	6.35	4.40	0.016

Experiments - Pose Refinement Evaluation Quantitative Results

- KITTI Odometry Dataset
- Training Sequences: 00 08
- Testing Sequences: 11 21

RGB ORB-SLAM				pRG	BD-I	nitial	pRGBD-Refined			
beq	RMSE	RelTr	RelRot	RMSE	RelTr	RelRot	RMSE	RelTr	RelRot	
11	14.83	7.69	0.003	6.68	3.28	0.016	3.64	2.96	0.015	
13	6.58	2.39	0.006	$\overline{6.83}$	2.52	0.008	6.43	2.31	0.007	
14	4.81	5.19	0.004	4.30	4.14	0.014	2.15	3.06	0.014	
15	3.67	1.78	0.004	2.58	1.61	0.005	2.07	1.33	0.004	
16	6.21	2.66	0.002	5.78	$\overline{2.14}$	0.006	4.65	1.90	0.004	
18	6.63	2.38	0.002	$\overline{5.50}$	$\overline{2.30}$	0.008	4.37	2.21	$\overline{0.006}$	
19	18.68	4.91	0.002	$\overline{23.96}$	$\overline{2.82}$	0.007	13.85	2.52	$\overline{0.006}$	
20	9.19	6.74	0.016	8.94	$\overline{5.43}$	0.027	7.03	4.50	$\overline{0.022}$	
12	X	X	X	X	X	X	94.2	32.94	$\overline{0.026}$	
17	X	X	X	14.71	8.98	0.011	12.23	7.23	0.011	
21	X	X	X	X	X	X	Х	X	Х	

Experiments - Pose Refinement Evaluation Qualitative Results

KITTI Odometry Sequence 09

KITTI Odometry Sequence 19

Analysis of Self-Improving Loops

- Improved depth predictions of both nearby and farther away points.
- Significant rate of reduction of errors.
- Pose refinement complements depth refinement.

Depth/Pose Evaluation metric w.r.t self-improving loops. Depth Evaluation metrics in (a-c) are computed at different max depth caps.

Conclusion

- Self-Improving framework to couple geometrical and learning based methods for 3D perception.
- Win-win situation achieved
- Both monocular SLAM and depth prediction are improved by a significant margin, without any active depth sensor and ground truth label

Thank you