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Abstract

In this paper, we present an automatic multi-model fit-
ting pipeline that can robustly fit multiple geometric mod-
els present in the corrupted and noisy data. Our approach
can handle large data corruption and requires no user in-
put, unlike most state-of-the-art approaches. The pipeline
can be used as an independent block in many geometric vi-
sion applications like 3D reconstruction, motion and planar
segmentation. We use residual density as the primary tool to
guide hypothesis generation, estimate the fraction of inliers,
and perform model selection. We show results for a diverse
set of geometric models like planar homographies, funda-
mental matrices and vanishing points, which often arise in
various computer vision applications. Despite being fully
automatic, our approach achieves competitive performance
compared to state-of-the-art approaches in terms of accu-
racy and computational time.

1. Introduction
The problem of fitting geometric models such as planar

homographies, fundamental matrices or vanishing points is

frequently encountered in computer vision. Accurate esti-

mation of these model parameters facilitate a simple and

interpretable representation of scene geometry, rigid body

motion or camera pose, and can aid scene understanding.

However, most features used for estimating these models

are obtained from low-level processing, e.g., detection of

keypoints, edges or lines. Feature extraction techniques

oblivious to the underlying scene geometry, typically pro-

duce a significant number of outliers, i.e., detections that do

not adhere to any genuine model instances. In many scenar-

ios, e.g., in autonomous driving, it is unreasonable to expect

user input about number of model instances or fraction of

outliers. It is important to automatically discover multiple

models from images or videos but it requires overcoming

several challenges including noise scale estimation, outlier

rejection and model selection.

We consider model fitting scenarios where the data is

generated from multiple model instances (inlier structures)

and is corrupted by noise and outliers. Data points that

follow a given model are inliers for that model and act as

pseudo-outliers for all other genuine models, while the ones

that do not follow any model are the gross-outliers. The

goal is to identify all genuine model instances and their cor-

responding inliers while rejecting the gross outliers. Once

the inliers are identified, standard techniques can be used

for parameter estimation of each recovered model.

Single model fitting is often solved by consensus maxi-

mization with heuristic methods like Random Sample Con-

sensus (RANSAC) [8] and its variants or by applying glob-

ally optimal techniques [2]. However, both approaches crit-

ically depend on the correct estimate of the scale of in-

lier noise (or equivalently, the fraction of inliers), often

taken as user input. For single model fitting, this process

can be automated by applying scale estimation techniques

[26, 25, 15], but in case of multi-model fitting the problem is

challenging due to additional unknowns. Several proposed

approaches [18, 3, 28, 11, 12, 13, 14, 16] assume the num-
ber of models or inlier scale or both are known a priori,

which introduces user dependency.

In this paper, we achieve automatic robust multi-model

fitting by exploiting the residual density [22], which is a key

differentiator between inliers and outliers. The inlier resid-

uals are relatively small and form a dense cluster near zero,

while the outliers have larger residual values and a much

lower density. The Density Guided Sampling and Consen-

sus (DGSAC) is an automatic technique for multi-model fit-

ting and is illustrated using a synthetic example in Fig. 1.

Our specific contributions are summarized below:

• Hypothesis generation: We present a novel iterative

approach that is driven by residual density based point

correlations and is shown to generate more relevant

model hypotheses from all inlier structures.

• Model Selection: We propose a novel greedy model

selection approach that uses the residual density to

uniquely identify a model hypothesis from each in-

lier structure and rejects redundant hypotheses based

on the Spearman-Footrule distance.

• Inlier Fraction Estimation: We identify the in-

lier/outlier boundary by applying a simple yet effec-
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Figure 1: DGSAC: Illustrative example (Multiple Line Fitting). Refer text in, (b) Sec. 3.2, (c) Sec. 3.3, (d) and (e) Sec. 3.4, point

membership is color coded, outliers in black.

tive heuristic based on residual dispersion and residual

density.

• Multi-model fitting: We combine the above three mod-

ules to engineer an end-to-end automatic multi-model

fitting solution that eliminates the need for user input.

The remainder of the paper is organized as follows.

Sec. 2 discusses recent approaches for multi-model fitting

and their limitations, followed by details of the proposed

method, DGSAC, in Sec. 3. We show extensive experimen-

tal evaluation showing the performance of DGSAC over

state of the art approaches in Sec. 4 and conclude with a

discussion in Sec. 5.

2. Related Work

In this section, we review relevant literature that address

different aspects of the robust multi-model fitting problem

in computer vision.

Clustering based approaches that operate in a conceptual

space [23, 13, 14, 16] have gained popularity over more

traditional extensions of RANSAC that work on the fit-
and-remove principle like sequential-RANSAC and multi-

RANSAC [29]. Both class of techniques generate hypothe-

ses by sampling minimal sample sets (MSS), but the for-

mer class of techniques implicitly assume the availability

of several relevant model hypotheses1 from an inlier struc-

ture, which are often achieved through guided sampling ap-

proaches. Guided sampling strategies can be broadly clas-

sified into the following two categories.

Domain knowledge based guided sampling utilize the

score of feature matches across images and/or their spatial

local neighborhood to bias the sampling process. Guided-

MLESAC [24], PROSAC [4], and EVSAC [9] assume po-

tential inliers would have high feature matching scores,

while SCRAMSAC [19] and NAPSAC [17] assume fea-

tures matches with similar spatial neighborhood in the im-

age space are more likely to be inliers. Such assumptions

of higher matching scores or spatial consistency could be

violated when repeated patterns are present in the image or

with a higher density of feature points, where outliers may

also satisfy the spatial consistency check. Moreover, both

1hypothesis fitted to all inliers minimal sample set

these assumptions restrict the application to models that di-

rectly work with image pairs and are difficult to extend to

more general geometric models like vanishing points.

Preference analysis based guided sampling techniques are

oblivious to domain information and rely only on ordering

of points (or hypotheses) according to the residuals. A point

(hypothesis) with a lower residual is said to be preferred

by a hypothesis (point) over another with a higher residual

value. Both DHF[28] and ITKSF[28] improve upon Multi-

GS[3] and use preferences to learn conditional distributions

which influence the probability of points sampled for the

MSS. While these methods generate a good proportion of

relevant model hypotheses, they operate within a time bud-

get framework. This limits their ability to generate hypothe-

ses from all inlier structures, particularly when the priors on

inlier fractions are skewed. In the presence of smaller in-

lier structures, i.e., model instances with only a few inliers,

the time budget needs to be quite large in order to gener-

ate a sufficient number of relevant hypotheses for the sub-

sequent clustering process to successfully identify smaller

structures. Besides, it is difficult to set an appropriate time

budget without prior knowledge of structures and their cor-

responding inlier fractions.

Given a set of model hypotheses, one needs to per-

form model selection, i.e., identifying one hypothesis for

each genuine inlier structure. Recently, matrix factorization

based approaches like RPA [14] or NMU [21] have been

proposed for model selection and have shown to outperform

clustering based approaches. RPA assumes the knowledge

of the inlier noise scale (albeit for the entire dataset) and

the number of structures to be known a priori. It constructs

a data point similarity matrix which is decomposed using

symmetric NMF [10], and used with a preference matrix for

final model selection. NMU outperforms RPA by enforcing

an additional constraint of under-approximation, however,

it also requires a user specified noise scale estimate.

In this paper, we deviate from the time budget frame-

work and propose a novel guided sampling technique us-

ing a residual density based stopping criterion, which makes

the guided sampling completely data-driven. Since our pro-

posed method DGSAC, has downstream tasks of inlier frac-

tion estimation and model selection that adhere more to the

consensus maximization framework rather than the cluster-

975



ing or matrix factorization based approaches, it suffices for

the sampling process to identify only one relevant model

hypothesis from each structure.

3. DGSAC
Notation: A matrix and its corresponding ith row and jth

column are represented by R, ri and rj respectively. Ele-

ment of a matrix is denoted by rji . First k elements of a

column vector rj is represented by rj[1:k]. Elements of a

column rj whose indices are in a set w is represented by

rj{w} and the cardinality of a set a is denoted by |a|.
Problem Statement: Let there be a total of κ inlier struc-

tures present in a given set of n data points, X = {xi, i =
1, . . . , n, xi ∈ R

d}. The fraction of inliers of each structure

is denoted by fi =
|Ii|
n , i = 1, ..., κ, where Ii is an index

set of inlier points of ith structure and f0 = 1 −∑κ
i=1 fi

denotes the fraction of outliers. Our goal is to output a set

of κ tuples (h1, I1), (h2, I2), ..., (hκ, Iκ), where hi and Ii
are the estimated model parameters and inlier set of the ith

structure respectively.

3.1. Building Blocks

Let hi be a hypothesis generated by fitting the model to

si, a minimal sample subset (MSS) of cardinality η, which

is the minimum number of data points required to uniquely

fit a model. Further, let H be the set ofmmodel hypotheses,

for which the residual vector ri (1) is computed using the

residual function defined as ψ(hi, xj) : R
d → R+.

ri = [r1i = ψ(hi, x1), ..., r
n
i = ψ(hi, xn)] (1)

We find a permutation set qi = [q1i , q
2
i , ..., q

n
i ] for the model

hypothesis hi such that r
q1i
i ≤ r

q2i
i ≤, ...,≤ r

qni
i and thus get

a ordered residual vector ρi = [r
q1i
i , r

q2i
i , ..., r

qni
i ], which is

then smoothed using an averaging filter of size �0.025 ×
n�. Since the permutation set qi ranks the data points and

encodes the preferences of the hypothesis hi therefore we

refer it as hypothesis preference set.

3.1.1 Residual Density

We compute the residual density [22] for a given hypothesis

hi at each data point xj as shown in (2). The number of data

points having residual smaller than ρji is considered as the

mass and accordingly the residual density dji is the mass per

unit volume2.

dji =
j

ρji + ε
=

j

r
qji
i + ε

, j = 1, ..., n (2)

The residual density plot of a model hypothesis is shown

in Fig. 2b. As expected, it can be observed that density is

2ε is a small constant added to the denominator to restrict the numerical

instability of the density.

higher near the regression surface (zero residual) and de-

creases as the residual increases.

(a) Hypotheses hi (b) Residual Density (dji )

Figure 2: Residual density plot of a good (red) and a bad

(blue) model hypothesis

3.1.2 Point Preferences

Analogous to the hypothesis preference set qi, we find a

permutation uj = [uj1, u
j
2, ..., u

j
m] for a data point xj such

that rj
uj
1

≤ rj
uj
2

≤, ...,≤ rj
uj
m

. This permutation vector uj

ranks the hypotheses, it encodes the preferences of a point

xi for model hypotheses. Since the ordering is based on

smallest residual first, we refer to uj as residual based point
preferences. Similarly, we find density based point prefer-
ences for xj as the permutation vj = [vj1, v

j
2, ..., v

j
m] such

that dj
vj
1

≥ dj
vj
2

≥, ...,≥ dj
vj
m

. Note that hypotheses are or-

dered in decreasing order of their density values.

Point preferences can be used to compute correlation be-

tween point pairs by applying intersection kernels (or a sim-

ilar measure) over the top-T preferences as in (3) below,

which shows the point correlation between xi and xj using

density based preferences. Similarly, residual based point

correlations can be computed using ui
1:T .

pji =
vi
[1:T ] ∩ vj[1:T ]

T
(3)

Ideally, a point correlation measure should be such that an

inlier point from one structure is highly correlated with in-

liers from the same structure, while having zero correla-

tion with points from different structures or outliers. With

this observation, using the breadcubechips example from

the AdelaideRMF dataset [27], we illustrate the advantage

of using point correlations based on density as opposed to

residual preferences in Fig. 3. The residual and density

based pairwise point correlation matrix (PCM) is shown in

Fig. 3(a) and Fig. 3(b) respectively, with brighter pixels

indicating higher correlation. For ease of illustration, the

points are ordered by structure membership, with the first

set (top rows) being the gross outliers. The value of T is set

after thorough empirical validation independently for both

the residual and density cases. Once selected, this value of

T is fixed across all experiments. Our choice of T =	0.1m

for residual based correlation is consistent with prior work

[3, 28] and we set T =5 for the density case.

We estimate the quality of a point correlation measure

by computing the percentage of outliers (both gross and
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Figure 3: Residual vs. Density based point correlation: breadcubechips sequence of AdelaideRMF [27] dataset (a) Residual based

and (b) Density based point correlation matrix with rows and columns ordered by structure membership. (c), (d) and (e) are percentage of

uncorrelated outliers varying with iterations of (Algo. 1) for each of the three structures bread, cube and chips respectively. Rows 2 and

3 show structure-wise averaged correlation (see Sec. 3.1.2) for details.

pseudo-outliers) that are uncorrelated, i.e., have exactly

zero correlation with inliers of a structure. We average the

rows of the PCM over all inliers from a single structure

and compute the percentage of uncorrelated outliers from

this averaged correlation. Note that we use the ground truth

for computing the averaged correlation only to compare the

density and residual based approaches, not in our algorithm

described later. Fig. 3, row-2, shows the plot of this av-

eraged correlation for the residual PCM with each column

heading (Outlier, Structure-1, etc.) indicating the rows over

which the averaging is performed. Similarly, the plots for

density based PCM are shown in row-3. In our guided sam-

pling based hypothesis generation, we update the PCM as

new model hypotheses are sampled (see Sec. 3.2 for de-

tails). At each iteration of sampling and hypothesis gener-

ation, the percentage of uncorrelated outliers is computed

from the updated PCM. Fig. 3(c)-(e) show how the percent-

age of outliers evolve over the iterations for density based

PCM (green curve) and the residual based PCM (red curve).

The density based correlation for outliers quickly converge

to zero for most outliers, while the same is not true for resid-

ual based correlations. In our experiments we have found

this observation to be typical for different types of data,

which is not surprising given that density is the key differ-

entiator between inliers and outliers. This sparsity observed

in the density based correlation values for outliers is a very

useful property and we exploit it in our proposed density

based guided sampling, which we discuss next.

3.2. Density Guided Sampling (DGS)

The goal of the guided sampling algorithm is to sam-

ple many pure MSS (with elements that are inliers to the

same structure). Most recent guided sampling algorithms

take the following approach: sample the first element from

a uniform distribution and sample the other elements from a

conditional probability mass function (PMF), which is usu-

ally derived from the PCM [3, 28].

In our proposed Density Guided Sampling (DGS) algo-

rithm, we follow a similar strategy except that we select

the first element deterministically follwed by iterative im-

provement of the PCM, which subsequently helps gener-

ate better model hypotheses. As summarized in Algo. 1,

DGS starts with initializing the set ν = {1, . . . , n} and

the PCM P, with a matrix of ones (Algo. 1, line 1), i.e.,

every point pair is equally correlated. We use the routine

generateHypotheses (Algo. 2) with inputs P, ν and

Algorithm 1: Density Guided Sampling (DGS)

Input : Data(Xd×n, η), Params(T, α)
Output: H, R, D, P

1 P ← �n×n,H = R = D = {∅}
2 ν ← {1, . . . , n}, τ curr = τ prev = 0n×1

3 while ν 
= {∅} do
4 [Ĥ, R̂, D̂]← generateHypotheses(P, ν, η)
5 H ← {H ∪ Ĥ}, R ← {R ∪ R̂}, D ← {D ∪ D̂}
6 V ← getDensityPointPreferences(D)
7 τ prev ← τ curr

8 τ currj =
∑T

t=1 d
j

vj
t

, j ∈ {1, . . . , n}
9 ν←{j∣∣ |τ currj −τprevj | ≥ ατprevj , j = 1, . . . , n}

10 P ← updatePointCorrelation(P, ν)
11 end
12 Θ← ⋃N

j=1 vj[1:T]
13 H ← H{Θ}, R ← R{Θ}, D ← D{Θ}
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η to generate a new model hypothesis for each point j ∈ ν
by sampling η points using the PCM P. The key steps in

generateHypotheses are lines 5-7 (Algo. 2), where

for each j ∈ ν, we sample η−1 points without replace-
ment (enforced by Algo. 2, line 6) using the conditional

PMF c, which in turn is obtained from Pj . Using the η
sample points, we generate a model h using the function

getModel, which is known a priori for different model

fitting tasks (plane, homography, vanishing point, etc.). We

collect the |ν| hypotheses in H and compute the correspond-

ing residual matrix R and residual density matrix D.

Algorithm 2: generateHypotheses
Input : P, ν, η
Output: H, R, D

1 foreach j ∈ ν do
2 s← ∅
3 s← {s ∪ xj}
4 for k ← 2 to η do
5 c← Pj

6 c{s} ← 0
7 c← c

Σc
8 s← {s ∪ getSample(c)}
9 end

10 h← getModel(s)
11 H = {H ∪ h}
12 end
13 R ← computeResiduals(H)
14 D ← computeDensity(R)

We combine the hypotheses generated and the corre-

sponding matrices R and D in the current iteration with our

previous set (Algo. 1, line 5). With a slight abuse of nota-

tion we use set union even with the matrices, only to em-

phasize uniqueness of rows after the update. We then use

the updated density matrix to recompute the rows of point

preference matrix V as described in Sec. 3.1.2. In order to

identify the points in ν that are well explained by the hy-

potheses in H, we introduce a measure τj , which is the sum

of residual densities corresponding to the jth point’s top-

T preferences (Algo. 1, line 8). If this measure does not

change significantly (Algo. 1, line 9), we assume the point

is well explained and remove it from the set ν. We update

the PCM P for all points in ν (Algo. 1, line 10) and repeat

the process (Algo. 1, lines 4-10) until the set ν is empty.

Finally, we retain the unique set of hypotheses which are

in the top-T preferences of all points and the corresponding

residual and density matrices.

While it is difficult to guarantee the termination of Algo.

1 with an upper bound on the number of generated hypothe-

ses, our experiments provide strong empirical evidence that

it terminates in a few iterations. In Sec. 4, we report the

total run time and show it to be competitive with most re-

cent guided sampling approaches. The main advantage of

taking this point-wise deterministic and iterative approach

is the reduction in bias towards generating more hypotheses

from structures with larger number of inliers. It is straight-

forward to combine DGS with additional constraints like a

time budget or an initial prior on inliers.

3.3. Fraction Estimation

Instead of estimating the scale of inlier noise, we equiv-

alently estimate the fraction of inliers for each of the gen-

erated hypotheses in H. Given a model hypothesis, using

its preference set q, we reduce the inlier fraction estima-

tion to the problem of finding an index g ∈ {1, . . . , n} that

partitions q into an inlier subset [q1i , q
2
i , ..., q

g
i ] and an out-

lier subset [qg+1
i , ...qn−1

i , qni ]. The index g then marks the

inlier/outlier boundary for the corresponding model hypoth-

esis and the corresponding fraction of inliers is simply g
n .

We note that the boundary index will always lie be-

yond the index of maximum density, i.e., g ≥ k1, where

k1 = argmaxj d
j
i . We ignore extreme outliers by consid-

ering boundary candidates that have residuals smaller than

a certain (adaptive) threshold. Let k2 be the index having

the largest residual smaller than bρ2ηi , where b is a large

constant (in our case, always 50), then we only consider

boundary candidate indices in the set {k1, . . . , k2}.
Since inliers are expected to have a significantly higher

residual density than outliers, a reliable property of a can-

didate boundary point is a large density difference with re-

spect to the maximum density, ρk1
i . While considering mod-

erately large outliers and inliers, the dispersion of residuals

computed over a local neighborhood windowwj is expected

to be large at the inlier/outlier boundary. Based on these in-

tuitions, we define a confidence score using two factors: the

normalized local dispersion of residual σ̄j
i and the normal-

ized density difference d̄ji (Algo. 3, line 4). For the ith

hypothesis, the boundary index gi and the fraction fi are

computed as shown in Algo. 3, lines 5 and 6 respectively.

We emphasize that estimating the fraction is a very dif-

ficult problem, if not an ill-posed one. Instead of having a

Algorithm 3: estimateFraction
Input : di,ρi, η, b
Output: fi, gi

1 σj
i ← std

(
ρ
{wj}
i

)
, ∀j ∈ {1, . . . , n}

2 k1 ← argmaxj d
j
i

3 k2 ← argmaxj (ρ
j
i ≤ bρ2ηi )

4 σ̄j
i ← σj

i

Σ
a=k2
a=k1

σa
i

, d̄ji ← |dj
i−d

k1
i |

Σ
a=k2
a=k1

|da
i−d

k1
i |
∀j ∈ {k1,. . .,k2}

5 gi ← argmaxj(σ̄
j
i × d̄ji ) ∀j ∈ {k1, . . . , k2}

6 fi ← gi
n
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complex fraction estimation technique, we employ a sim-

ple and intuitive heuristic which empirically yields reason-

able results for good model hypotheses. We expect to make

some errors in fraction estimation, however we do not at-

tempt to fix it at this stage and rely on the downstream

model selection module to reject such hypotheses with poor

fraction estimates.

3.4. Model Selection

We use the fraction estimated by Algo. 3 and identify

the inlier set and re-fit all models in H using residual den-

sity based weighted least-squares followed by re-estimating

the inlier fraction. For each hi ∈ H, the corresponding

inlier set is obtained as Ii = {q1i , q2i , ..., qgii } from the hy-

pothesis preference set qi. Due to the nature of the hypoth-

esis generation process, there may be multiple model hy-

potheses that explain the same inlier structure. The goal of

model selection is to retain the most representative model

hypothesis and discard the redundant ones. To identify the

best model, we need a measure to quantify the goodness of

a model. Since the number of structures are not known a

priori, we need to measure redundancy between model hy-

potheses before discarding them. For the latter, we estimate

pairwise correlation between hypotheses by computing the

Spearman-Footrule (SF) distance [28, 6] between their cor-

responding inlier only preference lists.

For a hypothesis pair hi and hj , let q̄i = [q1i , q
2
i , ..., q

ḡ
i ]

and q̄j = [q1j , q
2
j , ..., q

ḡ
j ] denote the top-ḡ inlier only pref-

erence lists, where ḡ=min(gi, gj). The Spearman-Footrule

distance is computed using (4), where Y (q̄i) denotes the

data points with indexes in q̄i and kq̄i denotes the position

of the data point (k) in the preference list q̄i. We use k + 1
for kq̄i if k /∈ Y (q̄i). Variables for q̄j are similarly defined.

F(q̄i, q̄j) = Σk∈Y (q̄i)∪Y (q̄j)
|kq̄i − kq̄j | (4)

zji = 1− 1

ḡ × (ḡ + 1)
F(q̄i, q̄j) (5)

Pairwise hypothesis correlation between hi and hj is com-

puted using (5) as zji ∈ [0, 1]. A perfect correlation of

zij = 1 indicates that both hi and hj have identical inlier

only preference lists, while zij = 0 indicates completely

dissimilar. We say a pair of hypotheses are similar if both

have score zij greater than some threshold δ. We construct a

binary similarity matrix C by thresholding zij ≥ δ.

For the goodness of the model, we define two scoring

functions, both leveraging the residual density. The first

score captures how densely are the inliers packed around

the structure defined by the model. Since we have to com-

pare this score across multiple hypotheses, simply using dji
does not suffice, so we compute the normalized density as

d̂ji =
dj
i

Ai
, where Ai is the total area under the residual den-

sity curve. The final score is computed as Si =
∑k=gi

k=1 d̂j
i

r̄gi

and a higher score implies a denser structure.

Algorithm 4: Greedy Model Selection (GMS)

Input : �, π,S,C
Output: ϑ

1 Initialization: ϑ← ∅

2 while � 
= ∅ do
3 i← argmaxjSj , ∀j ∈ �
4 k ← {j |cji = 1}, ∀j ∈ �
5 �← argmaxjπj , ∀j ∈ k
6 ϑ← {ϑ ∪ �}
7 �← {� \ k}
8 end

Apart from absolute density, we want the second scoring

function π to capture the disparity in the residual density of

inliers and outliers. For a model hypothesis hi, we define

πi =
med

(
d
[1:gi]

i

)2

med(dγ
i )

, where γi = [gi + 1, ..., β] is the index

set of top-β outliers of hi. The complete greedy model se-

lection (GMS) algorithm is explained in Algorithm 4. It

takes inputs �, π,S and C, where � is the index set of all

generated hypotheses. The algorithm first picks the densest

hypothesis based on the highest score of S (Algo. 4, line

3) and identifies all similar hypotheses in the set k using

the binary similarity matrix C (Algo. 4, line 4). Of all the

similar hypotheses, we select the one that has the highest

score π (Algo. 4, line 5). The best hypothesis retained in

ϑ and the redundant ones removed from the universal set

�. The process is repeated until the set � is empty. The fi-

nal set of fitted models are in ϑ. At this stage, some of the

data points may be members of multiple sets Ii and Ij for

i, j ∈ ϑ. This is acceptable for soft partitioning, however,

we reassign the points based on the density to achieve hard

partitioning of data points.

4. Experimental Results
We compare DGSAC3 with Tlnk[13], Cov[16],

NMU[21], RPA[14], DPA[22], RCM[18] and Jlnk[23] as

a complete end-to-end multi-model fitting pipeline. We

use publicly available implementation of the competing ap-

proaches and tune them for best performance as suggested

in the respective publications. All competing approaches

are provided the required user inputs (ε= inlier threshold,κ
= no. of structures) tabulated in the table 1 computed from

the ground truth.

Table 1: User input: (�= Required, ×= Not Required)
RPA[14] Tlnk[13] RCM[18] DPA[22] Cov[16] NMU[21] DGSAC

ε � � � � � � ×
κ � � × × � × ×

3Source code available at https://bitbucket.org/lokender/dgsac
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Table 2: [Real Examples- Motion Segmentation] Quantitative Analysis: Classification Accuracy(CA) in (%), Time in

seconds, out= Outliers Percentage, κ = #Structures, μ=mean, med=median.
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CA(%) Time(s)
out 57.16 47.51 37.21 42.48 21.48 35.20 32.19 35.22 37.41 34.15 36.59 69.49 28.03 51.62 41.42 44.54 73.48 51.54 36.36

μ med μ med
κ 1 2 3 3 1 4 2 3 2 3 3 1 4 2 2 3 1 2 3

Tlnk[13] 83.09 97.77 88.80 83.73 82.57 80.51 85.62 82.00 96.81 84.70 88.00 46.29 80.18 95.14 78.80 78.56 77.60 70.61 70.70 81.65 82.57 12.81 11.69

RCM[18] 95.15 92.52 83.71 78.46 94.01 78.82 87.27 83.17 78.37 83.07 78.85 87.98 81.62 90.32 89.64 72.28 90.77 85.40 83.45 84.99 83.71 04.62 03.83

RPA[14] 98.36 96.42 95.83 87.53 97.54 91.73 95.95 95.57 97.15 92.17 94.30 97.15 93.21 96.48 96.31 84.78 95.97 96.95 91.70 94.47 95.95 39.25 38.75

DPA [22] 82.12 97.24 95.14 83.69 90.16 91.56 94.09 94.61 90.59 88.67 86.30 96.89 87.28 92.92 93.61 84.17 97.47 90.95 85.65 90.64 90.95 50.34 46.78

Cov[16] 98.35 97.58 93.99 77.82 97.16 87.34 95.92 88.59 82.37 89.18 88.72 97.12 90.68 93.59 95.50 68.66 92.39 95.52 82.07 90.14 92.39 54.71 47.29

NMU[21] 97.58 98.83 98.07 82.80 100 94.94 97.11 97.39 97.92 92.17 97.58 98.01 87.16 98.59 97.99 84.44 98.71 92.07 91.50 94.89 97.58 399.3 399.2

DGSAC 98.18 98.58 97.58 82.59 99.03 87.88 97.73 93.04 90.74 89.49 85.52 96.76 88.57 97.38 97.32 83.92 95.02 98.19 90.35 93.05 95.02 24.17 20.21

Table 3: [Real Examples- Planar Segmentation] Quantitative Analysis: Notations are same as of table 2.
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CA(%) Time(s)
out 68.87 06.17 73.73 60.74 47.84 61.56 20.91 12.01 32.48 55.34 62.91 39.51 36.51 33.51 32.45 45.28 47.20 16.55 76.50

μ med μ med
κ 2 6 1 2 3 2 4 7 2 2 2 3 3 2 2 1 2 5 1

Tlnk[13] 57.93 60.41 64.34 69.53 57.80 71.63 57.80 70.72 77.72 82.51 81.26 67.76 53.03 53.70 73.77 68.49 84.32 71.86 77.29 68.99 70.72 492.5 81.33

RCM[18] 84.81 81.67 87.27 75.23 71.45 77.38 83.00 79.41 75.27 77.02 70.66 74.29 71.87 77.56 92.45 54.53 71.68 97.02 90.06 78.55 77.38 5.31 3.39

RPA[14] 62.90 52.88 84.34 99.07 81.96 81.38 91.10 66.84 79.16 63.53 73.25 75.14 78.51 99.21 76.73 100 99.44 88.00 76.14 80.50 79.16 967.2 247.19

DPA[22] 97.68 77.98 96.57 96.17 85.90 96.91 87.08 74.36 90.46 95.21 80.56 83.63 80.21 97.40 96.33 98.40 99.76 93.17 98.34 90.90 95.21 37.68 30.06

Cov[16] 70.74 68.62 99.74 77.92 82.76 91.75 86.12 65.18 93.83 92.92 86.62 74.05 72.61 90.77 79.20 99.51 80.40 91.19 99.45 84.18 82.76 145.9 53.19

NMU[21] 89.63 84.27 98.48 98.13 86.67 98.44 90.62 75.04 96.20 98.14 94.70 78.38 95.85 97.64 98.42 79.25 99.60 94.72 99.10 92.28 95.9 499.6 298.1

DGSAC 69.64 73.01 98.19 96.85 88.31 97.84 94.93 77.51 91.87 94.18 92.87 82.57 90.61 99.15 94.18 99.42 98.58 92.97 97.12 91.04 94.18 114.72 23.24

As is typical in multi-model fitting literature, we use

classification accuracy (CA) as an evaluation metric i.e.,

percentage of data points correctly assigned to their corre-

sponding structure or otherwise marked as gross outliers.

All results are averaged over 10 runs. While we have also

reported the running time, it is not a strictly fair comparison

as the programming language varies across the competing

approaches. DGSAC is implemented in Matlab therefore

further improvement in running time is possible with an op-

timized implementation.

4.1. Real Examples

We show results on four real examples. 1. Motion seg-

mentation, 2. Homography based planar segmentation, 3.

Vanishing Point(VP) estimation and line classification and

4. Plane fitting to 3D point cloud.

Motion Segmentation, Planar Segmentation: We use

AdelaideRMF [27] dataset, which comprises 19 image pairs

each for homography based planar segmentation and fun-

damental matrix based motion segmentation. A quantita-

tive analysis of DGSAC with the competing approaches for

each of the 19 image pairs of motion segmentation and pla-

nar segmentation is reported in the Tables 2 and 3 respec-

tively. NMU achieves the highest accuracy for both mo-

tion and planar segmentation experiments but it takes high-

est running time and requires inlier threshold from the user.

DGSAC achieves the next best accuracy, lagging behind by

a margin of < 2%, without any user input at all. Moreover,

in terms of average time to run, DGSAC is nearly 16× faster

than the NMU in motion segmentation, and 5× in planar

segmentation, with the median run times being even better.

We report some sample qualitative results in Fig. 4 where

point membership is color coded.

AdelaideRMF[27] (Motion Segmentation)
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Figure 4: Real Examples: Sample Qualitative Results.

VP Estimation and Line Classification: We compare

DGSAC with state of the art approaches RPA [14], Cov [16]

and L1-NMF [20] for two vanishing point datasets. The

York urban line segment [5] and the Toulouse Vanishing

Points [1] datasets comprising 102 and 110 images of urban

scenes respectively. We report the results in Table 4 and
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Figure 5: Parameters Sensitivity Analysis for AdelaideRMF motion segmentation dataset. Refer section 4.2 for details.

Fig. 6 and observe that DGSAC outperforms the competing

approaches in both datasets.

Table 4: [Real Examples- VP Estimation] Quantitative Analy-

sis: Notations are same as in table 2.
York[5] Dataset Toulouse[1] Dataset

CA(%) Time(s) CA(%) Time(s)
μ med μ med μ med μ med

RPA[14] 95.39 97.90 04.36 02.36 55.32 54.55 00.76 00.72
Cov[16] 95.57 97.44 01.24 00.26 51.78 50.00 00.04 00.07
L1-NMF[20] 94.12 96.66 00.71 00.31 74.13 75.00 00.07 00.54
DGSAC 95.66 97.96 07.75 01.89 91.58 95.35 00.24 00.23
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Figure 6: Real Examples: Sample Qualitative Results.

Plane Fitting to 3D Point Cloud: We use CastelV echio,

PozzoV eggiani and PiazzaDante real examples of

SAMANTHA [7] data set. Since ground truth labeling is

not available for 3D point clouds, therefore, we presented

only qualitative results in figure 7. Only JLnk [23] and

DGSAC are able to recover planes correctly.

Data JLnk[23] TLnk[13] Cov[16] DGSAC
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Figure 7: Real Examples: (Plane Fitting to 3D Point Cloud):

Sample Qualitative Results. Point membership is color coded.

4.2. Analysis of Parameters

In the complete DGSAC pipeline, we have introduced

several parameters, which adds to the complexity of the ap-

proach. However, our choice of parameters are based on

making data-driven decisions and reasonable perturbations

do not affect DGSAC’s performance. All the parameters,

specifically, T and α in Algo. 1, b and wj in Algo. 3

and δ and β in the Sec. 3.4 are fixed for all model types
and experiments. We set the values as T = 5, α = 0.01,

b = 50, δ = 0.15, β = 	β̄ × n
 = 	0.05 × n
 and

|wj | = 	w̄j×n
 = 	0.1×n
. We emphasize that DGSAC is

not very sensitive to these parameters and plot the mean and

median accuracy on motion segmentation AdelaideRMF

dataset in the figure5 as empirical evidence.

5. Discussion & Conclusion
Inlier noise scale (inlier fraction) and the number of in-

lier structures are the two most important parameters in the

multi-model fitting process. For methods like TLnk [13]

and Cov [16], scale estimate is required for each image

pair, which makes the multi model fitting process ineffi-

cient and limits it applicability where automatic execution

is a requirement. NMU [21] is currently the best performing

method for motion and planar segmentation but requires an

inlier threshold and is very sensitive to it (as shown in the

experiments of the original paper).

We reiterate that if the disparity between inlier and out-

lier density is absent, it is impossible to distinguish be-

tween inliers and outliers. DGSAC utilizes the residual den-

sity as a key differentiator between inliers and outliers and

presents a solution for all the modules of a multi-model fit-

ting pipeline. Using the residual density based sampling,

DGSAC generates more relevant hypotheses and performs

model selection by employing residual density based scor-

ing functions. We believe that residual density is a key fea-

ture in multi-model fitting tasks and plan to continue our

investigations. Specifically, we plan to get a better under-

standing of termination conditions of the density guided

sampling algorithm. We also plan to work on improving

the heuristic for inlier fraction estimation by exploring non-

parametric hypothesis testing techniques.
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