

REGroup: Rank-aggregating Ensemble of Generative Classifiers for Robust Predictions

Saket

Anand

Lokender Tiwari

Anish Madan Subhashis Banerjee

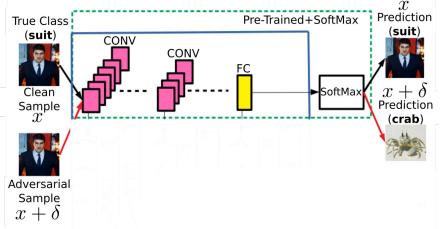
Project Page: https://lokender.github.io/REGroup.html

WACV Paper ID : 885

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Motivation

• Deep Neural Network based image classifiers can be fooled by adversarial samples



- Successful defenses:
 - Adversarial Training [1] : Train classifier using both clean and adversarial samples
 - Input randomization [2] before passing to a classifier
- Require fine-tuning or retraining (computational expensive and time consuming)
 - Adversarial training for full scale ImageNet classification
 - 52 hours on 128 NVIDIA V100 GPUs for ResNet-152 based classifier model [1]

Cihang Xie et al. "Feature Denoising for Improving Adversarial Robustness". CVPR, 2019
Edward Raff et al. "Barrage of Random Transforms for Adversarially Robust Defense". CVPR, 2019

Motivation

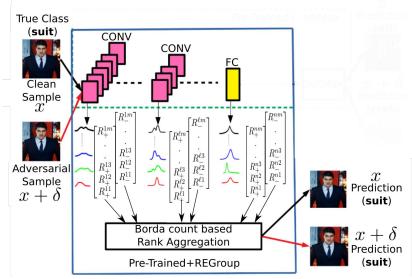
- Most defense methods [1]
 - are attack specific, architecture specific
 - practically not scalable (e.g., full ImageNet level)
- Need for a defense mechanism
 - agnostic to classifier architectures and the adversarial attack generation method
 - can detect and make correct prediction for adversarial examples
 - easy to scale to large scale classification task
- REGroup: Rank-aggregating Ensemble of Generative classifiers for robust predictions

REGroup Overview

Normal Inference Procedure x Prediction Pre-Trained+SoftMax True Class (suit) (suit) CONV CONV FC SoftMax x $+ \partial$ Clean $\overset{\mathrm{Sample}}{x}$ Prediction (crab) Adversarial Sample $x + \delta$

SoftMax based final prediction

REGroup inference Procedure



- Layer-wise ranked predictions
- Final prediction based on aggregated rankings

REGroup Overview

- 1. Generative classifiers
 - Class conditional layer-wise mixture distributions
 - Two distributions per layer, per class
 - Using positive pre-activation neural responses
 - Using negative pre-activation neural responses

One time only

- 2. Inference step
 - Layer-wise comparison of sample distributions with the class conditional distributions
 - KL-Divergence
 - Make layer-wise ranked predictions
 - Use robust rank aggregation strategy to aggregate ranked predictions
 - Final prediction is the class, with the highest rank

- Classifier architectures: VGG19 [1] and ResNet50 [2]
- Dataset: ImageNet [3]
- Adversarial attacks
 - Gradient Based Attacks (White box)
 - Full access to network parameters
 - Gradient Free Attacks (Black box)
 - Classifier is a back-box

Simonyan et al. "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR, 2015
He at al. "Deep Residual Learning for Image Recognition", CVPR, 2016
Jia Deng et al. "ImageNet: A Large-Scale Hierarchical Image Database". CVPR, 2009

• Gradient Based Attacks:

- Projective Gradient Descent (PGD) [1]
- DeepFool (DFool) [2]
- Carlini and Wagner (C&W)[3]
- Trust Region attack (TR) [4]
- Color adversarial attack (cAdv) [5]

UN : Untargeted Attack

- TA : Targeted Attack
- HC : High Confidence (at-least 90%)
- ϵ : Adversarial Perturbation Budget
- #S : No. of adversarial samples

T1(%): Top-1 accuracy

-				F	ResNet	-50	VGG-19			
		UN /		SMax REGroup			SMax REGroup			
	Data	TA / HC	ϵ	#S	T1(%)	T1(%)	#S	T1(%)	T1(%)	
Clean	V10K	-		10000	100	88	10000	100	76	
Clean	V2K	-	-	2000	100	86	2000	100	72	
Clean	V10C	-	_	417	100	84	392	100	79	
PGD	V10K	- ŪN-	$\overline{4}(\overline{L_{\infty}})$	<u>9</u> 997	- 0 -	48	9887	_0_	- 46 -	
DFool	V10K	UN	$2(L_2)$	9789	0	61	9939	0	55	
C&W	V10K	UN	$4(L_2)$	10000	0	40	10000	0	38	
TR	V10K	UN	$2(L_{\infty})$	10000	0	41	9103	0	45	
cAdv	V10C	UN	-	417	0	37	392	0	18	
PGD	V2K	- <u>T</u> A -	(L_{∞})	2000		47	2000	_0_		
C&W	V2K	TA	(L ₂)	2000	0	46	2000	0	38	
PGD	$\overline{V}2\overline{K}$	UN+HC	(L_{∞})	2000		21	2000	_0_	_ 19	
PGD	V2K	TA+HC	(L_{∞})	2000	0	23	2000	0	17	

Tab 1. Classification accuracy on gradient based attacks

- [1] Madry, Aleksander, et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." ICLR. 2018
- [2] Moosavi-Dezfooli et al. "Deepfool: a simple and accurate method to fool deep neural networks." CVPR. 2016
- [3] Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." IEEE symposium on security and privacy, 2017
- [4] Yao, Zhewei, et al. "Trust region based adversarial attack on neural networks." CVPR, 2019
- [5] Bhattad, Anand, et al. "Unrestricted Adversarial Examples via Semantic Manipulation." ICLR. 2019

- Gradient Free Attacks (Black Box Attacks):
 - SPSA Attack [1]
 - Boundary Attack [2]
 - Spatial Attack [3]

).						Conter	50	100 17			
/-	UN /			SMax REGroup			SMax REGroup				
		Data	TA / HC	ϵ	#S	T1(%)	T1(%)	#S	T1(%)	T1(%)	
	SPSA	V10K	UN	$4(L_{\infty})$	4911	0	71	5789	0	58	
	Boundary	V10K	UN	2 (L ₂)	10000	0	50	10000	0	50	
	Spatial	V10K	UN	2 (L ₂)	2624	0	36	2634	0	30	

Tab 2. Classification accuracy on gradient free attacks

ResNet-50

VGG-19

UN : Untargeted Attack

- ϵ : Adversarial Perturbation Budget
- #S : No. of adversarial samples

T1(%) : Top-1 accuracy

Jonathan Uesato et al. "Adversarial Risk and the Dangers of Evaluating Against Weak Attacks". ICML, 2018
Brendel et al. "Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models". ICLR, 2018
Logan Engstrom et al. "Exploring the Landscape of Spatial Robustness". ICML, 2019

- Comparison with adversarial training [1] and input randomization method [2]
- BaRT: Barrage of Random Transforms
- EOT : Expectations over Input Transformations
- Dataset: Full ImageNet
- PGD Attack
 - Comparison with respect to adversarial attack strength

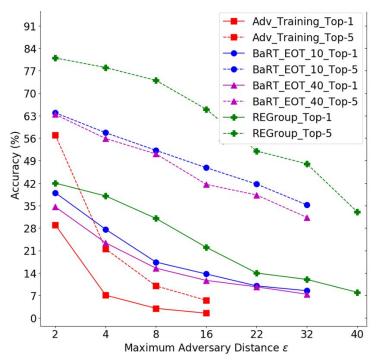


Fig 3. Comparison with adversarial training and fine tuning methods

Thank you