

Problem Definition and Contribution

Goal: Defending against adversarial attacks in deep neural networks without expensive adversarial training or fine-tuning

Our Approach: Learn class conditional *generative* classifiers by statistically characterizing the *pre-activation* neural responses of intermediate layers to clean training samples

- Make ranked predictions at intermediate layers using generative classifiers
- Aggregate the ranked predictions from the intermediate-layers using Adversarial Borda-count[2] to make final predictions

Key Advantages:

- Make a pre-trained classifier robust to adversarial attacks
- Agnostic to : adversarial attacks, classifier architectures
- *Scalable* : ImageNet, CIFAR10

REGroup Methodology

Layerwise Neural Response Distributions: We model layerwise PMFs of neuronal responses using the preactivation feature maps for a subset S of the training set.

• We denote the PMFs by $\mathbb{P}_{i}^{\ell i}$ and $\mathbb{N}_{i}^{\ell i}$ corresponding to positive and negative responses. Here ℓ , i and j denote the ℓ^{th} layer, i^{th} feature map and the j^{th} input sample respectively.

Layerwise Generative Classifiers: We model the layerwise generative classifiers for class y as a class-conditional mixture of distributions, with each mixture component as the PMFs \mathbb{P}_i^{ℓ} and \mathbb{N}_i^{ℓ} for a given training sample $x_i \in \mathcal{S}_y$.

$$\mathbb{C}_{y}^{+\ell} = \sum_{j:x_j \in \mathcal{S}_{y}} \lambda_{j} \mathbb{P}_{j}^{\ell}, \qquad \mathbb{C}_{y}^{-\ell} = \sum_{j:x_j \in \mathcal{S}_{y}} \lambda_{j} \mathbb{N}_{j}^{\ell}$$
(1)

At inference time, we compute the PMFs \mathbb{P}_{i}^{ℓ} and \mathbb{N}_{i}^{ℓ} for a test sample x_{j} . Then, we compute KL-Divergence between the classifier model $\mathbb{C}^{+\ell}$ and the test sample \mathbb{P}_i^{ℓ} (and similarly for \mathbb{N}_i^{ℓ}) as a classification score:

$$P_{KL}(\ell, y) = \sum_{i} \mathbb{C}_{y}^{+\ell i} \log\left(\frac{\mathbb{C}_{y}^{+\ell i}}{\mathbb{P}^{\ell i}}\right), \forall y \in \{1, \dots, M\}$$
(2)

Rank Ordering and Aggregation: We rank-order the classes, which we simply achieve by sorting the KL-Divergences (Eqn. (2)) in ascending order. $R_{\perp}^{\ell y}$ is the rank of y^{th} class in the ℓ^{th} layer preference list R_{\perp}^{ℓ} .

$$R_{+}^{\ell} = [R_{+}^{\ell 1}, R_{+}^{\ell 2}, ..., R_{+}^{\ell y}, ..., R_{+}^{\ell M}], \quad R_{-}^{\ell} = [R_{-}^{\ell 1}, R_{-}^{\ell 2}, ..., R_{-}^{\ell y}, ..., R_{-}^{\ell M}]$$
(3)

- The individual layer's class ranking preferences are aggregated using Borda count-based scoring. The individual Borda count of both voters are denoted by $B_+^{\ell y}$ and $B_-^{\ell y}$ and M is the number of classes. $B_{+}^{\ell y} = (M - R_{+}^{\ell y}),$
- We aggregate the Borda counts of highest k layers of the network. Let B^{ky} denote the aggregated Borda count of y^{th} class from the last k layers. Our final prediction is denoted by \hat{y} .

$$B^{ky} = \sum_{\ell=n-k+1}^{n} B^{\ell y} = \sum_{\ell=n-k+1}^{n} B^{\ell y}_{+} + B^{\ell y}_{-}, \quad \forall y \in \{1..M\}; \quad \hat{y} = argmax_{y} \ B^{ky}_{-} + B^{k$$

References

- Edward Raff et al. "Barrage of Random Transforms for Adversarially Robust Defense". In: CVPR. 2019.
- Jörg Rothe. "Borda Count in Collective Decision Making: A Summary of Recent Results". In: AAAI. 2019. [2]
- Cihang Xie et al. "Feature denoising for improving adversarial robustness". In: CVPR. 2019. 3

REGroup: Rank-aggregating Ensemble of Generative Classifiers for Robust Predictions

Lokender Tiwari^{1,2}, Anish Madan², Saket Anand², Subhashis Banerjee^{3,4} ¹TCS Research, ²IIIT-Delhi, ³IIT Delhi, ⁴Dept. of Computer Science, Ashoka University **Project Page**: https://lokender.github.io/REGroup.html

$$B_{-}^{\ell y} = (M - R_{-}^{\ell y}); \tag{4}$$

Network Architectures & Dataset:

Accuracy vs no. of layers

Performance on Gradient Based Attacks:

Table 4: Performance on Gradient-Based Attacks. Comparison of Top-1 classification accuracy between SoftMax (SMax) and REGroup based final classification. Notation: UN -> Untargeted Attack, TA: Targeted Attack(selects target class randomly), HC: High Confidence (> 90% confidence, and ϵ is unbounded).

Experiments & Results

• Network architectures. We consider ResNet-50 and Comparison with adversarially trained and fine-tuned VGG-19 architectures, pre-trained on ImageNet dataset. classification models • Dataset.We present our evaluations, comparisons and

analysis on the ImageNet dataset. We use the subsets of full ImageNet validation set as described in Tab. 1.

Dataset Description

- V50K Full ImageNet validation set with 50000 images.
 - A subset of 10000 correctly classified images from V50K set. 10 Per class.
 - A subset of 2000 correctly classified images from V50K set. 2 Per class.
 - A subset of correctly classified images of 10 sufficiently different classes.

Table 1: Dataset used for evaluation and analysis

(Dataset used: Model ResNet-50 Inception v3 ResNet-152 Inception v3 w ResNet-152 w/ ResNet-152 w/ ResNet-50-Bal ResNet-50-Bal ResNet-50-RE

Table 2: The results are divided into three blocks, the top block include original networks, middle block include defense approaches based on adversarial re-training/finetuning of original networks, bottom block is our defense without re-training/fine-tuning.

Performance on Gradient-Free Attacks:

			ResNet-50		VGG-19	
				REGroup		REGroup
	Data	ϵ	#S	T1(%)	#S	T1(%)
SPSA	V10K	$4(L_{\infty})$	4911	71	5789	58
Boundary	V10K	$2(L_2)$	10000	50	10000	50
Spatial	V10K	$2(L_2)$	2624	36	2634	30

1 2 3 4 5 6 7 8 9 10111213141516171819

				ResNet-50			VGG-19		
	UN /			SMax REGroup			SMax REGroup		
	Data	TA / HC	ϵ	#S	T1(%)	T1(%)	#S	T1(%)	T1(%)
Clean	V10K			10000	100	88	10000	100	76
Clean	V2K		_	2000	100	86	2000	100	72
Clean	V10C	—	_	417	100	84	392	100	79
PGD	V10K	UN	$4(L_{\infty})$	9997	0	48	9887	0	46
C&W	V10K	UN	$4(L_2)$	10000	0	40	10000	0	38
cAdv	V10C	UN	_	417	0	37	392	0	18
PGD	V2K	TA	(L_{∞})	2000	0	47	2000	0	31
PGD	V2K	UN+HC	(L_{∞})	2000	0	21	2000	0	19

V50K).	Clean Images		Attacked Images	
	Top-1	Top-5	Top-1	Top-5
	76	93	0.0	0.0
	78	94	0.7	4.4
	79	94	-	-
v/Adv. Train	78	94	1.5	5.5
/Adv. Train [3]	63	-	45	-
/Adv. Train [3]w/ denoise	66	-	49	-
RT [1], $\hat{k} = 5$	65	85	16	51
RT [1], $\hat{k} = 10$	65	85	36	57
EGroup	66	86	22	65

Table 3: Top-1 (%) classification accuracy for REGroup. Note that top-1 accuracy for all cases of softmax are 0.